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Abstract

New upper bounds for the solution of the discrete algebraic Lyapunov equation (DALE) P"APAT#Q are presented. The only
restriction on their applicability is that A be stable; there are no restrictions on the singular values of A nor on the diagonalizability of
A. The new bounds relate the size of P to the radius of stability of A. The upper bounds are computable when the large dimension of
A make direct solution of the DALE impossible. The new bounds are shown to re#ect the dependence of P on A better than previously
known upper bounds. ( 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The discrete algebraic Lyapunov equation (DALE) is

P"APAT#Q, A, Q3Rn]n, Q"QT'0 , (1)

where all the eigenvalues of A lie inside the unit circle; (T )
and ('0) denote transpose and positive de"niteness,
respectively; P"PT'0 is the solution. The matrix P is
the steady-state covariance of a discrete-time, stochasti-
cally forced, stable linear system,
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where S)T denotes expectation and d
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is the Kronecker
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is given by the DALE.
There are many known upper and lower bounds for

the solution of the DALE that relate properties of A and
Q to the size of P (Kwon et al., 1996). A measure of the

value of such bounds is whether they (i) are easier to
compute than the actual solution P or (ii) o!er some
theoretical insight. By these measures the usefulness of
a particular bound depends on the application. For in-
stance, few bounds would be dramatically cheaper to
compute than the actual solution in low-dimensional
problems with "xed A and Q. Our interest in the DALE
comes from the application of Kalman-"lter-based
methods to the problem of estimating the state of the
atmosphere (Cohn, 1997). Lyapunov equations have also
been used in other atmospheric science applications
(Penland, 1989; Whitaker and Sardeshmukh, 1998). Dis-
tinguishing properties of the matrix A in these applica-
tions are (i) its large dimension and (ii) its nonnormality.
The immediate consequences of these two points are
(i) impossibility of direct solution and (ii) inapplicability
of known bounds.

Large dimension is typical of approximations of sys-
tems governed by partial di!erential equations. For real-
istic atmospheric models, the dimension n is often O(106)
or larger. Therefore while the deterministic dynamics in
Eq. (2) is computable, the storage of P, the multiplication
of the product APAT and the direct solution of Eq. (1)
are all impossible. Bounds for P would provide valuable
practical and theoretical information in this application.
Of course, the bounds should be computable even n is
large. Iterative (Krylov) methods are valuable tools for
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extracting information from A when n is large (Golub
and Van Loan, 1996, Ch. 10). The same iterative methods
routinely used to compute leading (or trailing) singular
values and vectors of A with n5105 could be used to
evaluate the bounds presented here (Buizza et al., 1997).

The applicability of most known upper bounds for the
solution of the DALE is limited when A is nonnormal.
A matrix is said to be nonnormal when it does not have
a complete set of orthogonal eigenvectors. Typical in-
dications of the nonnormality of A seen in applications
are (i) though stable A may have singular values greater
than unity and (ii) the eigenvectors of A may be poorly
conditioned (Farrell, 1988). Many upper bounds for the
solution of the DALE are in"nite or inapplicable when
the singular values of A are greater than or equal to unity
(Kwon et al., 1996). Other upper bounds depend on the
conditioning of the eigenvectors of A and are in"nite
when A does not have a complete set of eigenvectors
(Gahinet et al., 1990). Such bounds are inapplicable in
many applications and can be &&#awed measures'' of the
behavior of the solution of the DALE, being unbounded
when the solution is nicely behaved.

Here, we present upper bounds that are applicable
with no restrictions on A and that are unbounded if and
only if the solution itself is unbounded. The bounds here
also give considerable theoretical insight as to the behav-
ior of the DALE, showing precisely which properties of
A determine P. Such information can used to develop
and understand approximations for the dominant part of
P. In previous work we showed that when A is highly
nonnormal and has singular values much larger than
unity, P will have some large components (Tippett, 1998).
Here we show that the complete information about the
DALE is contained not in the spectrum or singular
values of A but in its resolvent. Interpretation of the
resolvent-based bounds in terms of the pseudospectrum
of A provides a link to a substantial and active body of
scienti"c research (Trefethen et al., 1993; Trefethen, 1997).

The paper is organized as follows. The new results are
presented in Section 2. We use an integral representation
for the solution of the DALE to derive upper bounds for
P that depend on the radius of stability of A. In Section 3
we comment on the signi"cance and utility of the results.
We show that the new bounds can be understood de-
pending on the pseudospectrum of A. We demonstrate
that the new bounds can be used to answer a conjecture
made in Gahinet et al. (1990). We present simple exam-
ples comparing the new bound to previously known ones
and prove that the new upper bounds go to in"nity if and
only if the solution itself is unbounded. Finally, we apply
the new bounds to the discrete approximation of a partial
di!erential equation.

For X3Rn]n, we use the notation j
i
(X) and p

i
(X) to

denote the ith eigenvalue and singular value of the matrix
X, where Dj

i
(X) D, i"1, 2, n and p

i
(X), i"1, 2, n are

in nonincreasing order. We will use the usual p-norm E)E
p

and the Frobenius norm E )E
F
. The Frobenius and

p-norms for 14p4R have the following properties
for all X and >3Rn]n (Golub and Van Loan, 1996):

EX#>E4EXE#E>E , (3)

EX>E4EXE E>E , (4)

EXTE"EXE . (5)

Standard properties of the trace operator are (Golub and
Van Loan, 1996):

tr(X#>)"tr(X)#tr(>) , (6)

tr(X>)"tr(>X) (7)

for X, >3Rn]n. For X, >3Rn]n and symmetric positive
semi-de"nite, there is the upper bound (GajicH and
Qureshi, 1995, Eq. (3.19))

tr(X>)4EXE
2
tr> . (8)

2. Results

De5nition 1. The radius of stability of A, r(A) is de"ned
by (Mori, 1990)

r(A)" inf
04h42n

ER (e*h, A)E~1 , (9)

where E )E is a particular matrix norm and the resolvent
of A, R(j, A) is de"ned by

R(j, A)"(jI!A)~1 . (10)

Denote by r
p
(A) and r

F
(A) the radii obtained by using the

p-norm and Frobenius norm respectively in Eq. (9).

Theorem 2. ¹he solution P of Eq. (1) is

P"

1

2n P
2n

0

R(e*h, A) QR(e~*h, AT) dh . (11)

Proof. From Lancaster (1970), the solution of Eq. (1) is

P"

1

2ni P!R(j, A)Q(I!jAT )~1 dj , (12)

where ! is a curve that encloses the eigenvalues of A.
Choosing ! to be the unit circle and taking j"e*h gives
the integral in Eq. (11).

Theorem 3. ¹he solution P of Eq. (1) satis,es

EPE4
EQE
2n P

2n

0

ER(e*h, A)E2 dh4EQE r~2(A) , (13)

where E)E may be the Frobenius or p-norm, 14p4R.
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Proof. From Eqs. (5) and (3)

EPE4
1

2n P
2n

0

ER(e*h, A)QR(e~*h, AT)Edh . (14)

Using Eq. (4) gives

EPE4
1

2n P
2n

0

ER(e*h, A)E EQE ER (e~*h, AT)Edh . (15)

Observing that ER(e*h, A)E"ER(e~*h, AT)E gives the "rst
inequality in Eq. (13). The second inequality follows by
noting that for 04h42n

ER(e*h, A)E24r~2(A) . (16)

Theorem 4. ¹he solution P of Eq. (1) satis,es

trP4

EQE
2

2n P
2n

0

ER(e*h, A)E2
F

dh4EQE
2
r~2
F

(A) (17)

and

trP4

trQ

2n P
2n

0

ER(e*h, A)E2
2

dh4trQ r~2
2

(A) . (18)

Proof. Using Eq. (6) gives

trP"

1

2n P
2n

0

tr(R(e*h, A)QR(e~*h, AT)) dh . (19)

Applying Eq. (7) gives

trP"

1

2n P
2n

0

tr (QR(e~*h, AT )R (e*h, A)) dh . (20)

Then Eq. (8) can be used with Q playing the role of either
X or >. This results in

trP4

EQE
2

2n P
2n

0

tr(R(e~*h,AT)R(e*h,A)) dh4EQE
2
r~2
F

(A)

(21)
or

trP4

trQ

2n P
2n

0

ER(e~*h, AT)R(e*h,A)E
2
dh4r~2

2
(A) trQ .

(22)

By de"nition tr (R(e*h, A)R(e~*h, AT) )"ER(e*h, A)E2
F
.

3. Remarks

Remark 5. The quantity r
p
(A) gives a measure of the

distance of A to an unstable matrix since an equivalent
de"nition for r

p
(A) is (Golub and Van Loan, 1996,

Eq. (2.7.6))

r
p
(A)" inf

04h42n
inf
Eh

EEhEp , (23)

where (e*hI!(A#Eh)) is singular. That is, if r
p
(A)4e

then, there exists a E with EEE
p
"e such that

Dj
1
(A#E) D"1. When A is normal, r

2
(A)"1!Dj

1
(A) D.

In general, when A is nonnormal, r
2
(A)41!Dj

1
(A) D

(Mori, 1990). If r
2
(A);1!Dj

1
(A) D, the properties of

P may be poorly described by the the eigenvalues of A. If
the solution of the DALE is known for any choice of Q,
the results here give lower bounds for the radius of
stability, a quantity of considerable interest and study in
Robust Stability (Kolla, 1996).

Remark 6. The bounds introduced here can be inter-
preted in terms of the pseudospectrum of A (Trefethen,
1997). The e-pseudospectrum of A consists of
approximate eigenvalues of A and is de"ned to be the
set of complex points j3C such that ER(j, A)E

2
5e~1.

Choosing e"r
2
(A) gives the largest value of e such

that the e-pseudospectrum of A lies within the unit
circle.

When A is normal, the behavior of the DALE is tied to
the spectrum of A. For normal A, P can be large com-
pared to Q only when the spectrum of A is close to the
unit circle. The results here show that for general A the
behavior of the DALE depends on the pseudospectrum
of A and that P can be large only when the pseudospec-
trum of A is close to the unit circle. The calculation of the
pseudospectrum of A consists of calculating ER (j, A)E as
a function of the complex variable j, precisely the in-
formation needed to compute the bounds presented here.
Theoretical and computational techniques developed to
calculate and analyze pseudospectra may be used to
investigate properties of the solution of the DALE.
E$cient methods for computing pseudospectra of large
matrices have been developed (Liu, 1997, and references
therein).

Remark 7. Denote by B the solution of Eq. (1) for Q"I.
In Gahinet et al. (1990) the conjecture was made that
EBE

2
is no larger than r~2

2
(A). Theorem 3 shows that this

conjecture is indeed true. Properties of B can be used to
obtain estimates for the solution of the DALE with
arbitrary Q. If P is the solution of Eq. (1) then, we have
(P!cB)"A(P!cB) AT#(Q!cI). Choosing the ex-
tremal values of c such that (Q!cI) is positive de"nite or
negative de"nite leads to the matrix bounds

j
n
(Q)B4P4j

1
(Q)B. (24)

Remark 8. A desirable property of an upper bound is
that the upper bound goes to in"nity if and only if the
solution itself is unbounded. Many upper bounds for the
solution of the DALE do not have this property. For
example, the matrix upper bound (and eigenvalue

M.K. Tippett, D. Marchesin/Automatica 35 (1999) 1485}1489 1487



Table 1
Comparison of upper bounds for A given in Eq. (26)

e EAE
2

E(1!p2
1
(A))~1ATA#IE

2
r~2
2

(A) (2n)~1 :2n
0

ER (e*h, A)E2dh EBE2

10~2 0.992 62.9 15.75 3.77 3.19
10~3 0.9992 625.5 16.0 3.82 3.23
10~4 0.9999 6.25]103 16.0 3.82 3.23
10~5 1.0 6.25]104 16.0 3.82 3.23

Table 2
Comparison of upper bounds for A given in Eq. (28)

e EAE
2

i
2

i2
2
/(1!Dj

1
(A) D2) r~2

2
(A) (2n)~1 :2n

0
ER (e*h, A)E2dh EBE

2

10~2 5.05 102 1.4]104 416.2 77.14 76.11
10~3 5.05 103 1.3]106 408.0 76.71 75.68
10~4 5.05 104 1.3]108 408.0 76.7 75.67
10~5 5.05 105 1.3]1010 408.0 76.7 75.67

bounds derived from it) (Lee, 1996)

P4

j
n
(Q)

1!p2
1
(A)

ATA#Q, p
1
(A)(1 (25)

becomes unbounded as p
1
(A)P1. However, when A has

singular values greater than or equal to one, solutions of
the DALE are bounded if the eigenvalues of A lie inside
the unit circle. For example, consider

A"C
0.5

0

0.75!e
0.5 D , (26)

and Q"I. Table 1 shows that as e goes to zero, the
estimate in Eq. (25) is unbounded while the bounds from
Theorem 3 are, like the solution B, well behaved. The
lack of tightness in the radius of stability bound is due to
replacing an integrand by its maximum value.

Remark 9. Similar misleading behavior can be seen in
the upper bound (Gahinet et al., 1990)

EBE4
i2

1!Dj
1
(A) D2

, (27)

where i is the 2-norm condition number of the eigen-
vectors of A. Note that for A in the previous example
i"R and Eq. (27) cannot be applied. The conditioning
of the eigenvectors of A does not always re#ect the
behavior of B. Consider the A from Example 3 of
Gahinet et al. (1990)

A"C
0.5

5

5e2
0.5D (28)

and Q"I. As e goes to zero, the condition of the eigen-
vectors of A is unbounded. In this example p

1
(A)'1 and

the bounds in Eq. (25) cannot be applied. Table 2 shows

that though the upper estimate in Eq. (27) becomes
unbounded as eP0, the new bounds and the solution
B are well-behaved. Again, the overestimate in the r~2

2
(A)

bound can be traced to replacing the integrand by its
maximum value.

Remark 10. The bounds presented here have the pleas-
ant property that the upper bound is in"nite if and only if
the solution is in"nite. This property can be seen from the
result (Gahinet et al., 1990)

EBE
2
5

1

2r
2
(A)#r2

2
(A)

. (29)

Hence, when r
2
(A) goes to zero and the bound in Eq. (13)

goes to in"nity, then EBE
2

must be unbounded. This
argument can be extended to other matrix norms by
noting that all matrix norms are equivalent; if r(A) goes
to zero for a particular choice of norm, it goes to zero in
all norms (Golub and Van Loan 1996, Section 2.3.2).
Likewise, if EBE

2
is unbounded then, B is unbounded in

all matrix norms. Finally, the bounds in Eq. (24) show
that if B is unbounded then so is P.

Remark 11. We now present an example where the new
bounds are particularly valuable for analyzing a family of
problems depending on a parameter. In this example
p
1
(A)"1 and i"R and the previously known bounds

in Eqs. (25) and (27) give no information. Consider the
dynamics coming from the one-dimensional advection
equation

Lw

Lt
#

Lw

Lx
"0 , 04x4n (30)

with boundary condition w (0)"0. De"ne wd(t) to be
the n-vector with components wd

i
(t)"w (x"i, t) for
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i"1, 2, n. The matrix A that advances wd(t) one time
unit is the n]n matrix

A"

0 0 0 . . 0

1 0 0 . . 0

0 1 0 . . 0

. . . . . . . .

. . . . 1 0 0

. . . . 0 1 0

. (31)

The eigenvalues of A are all zero, independent of n.
A direct calculation of the radius of stability shows that

r
F
(A)"A

n(n#1)

2 B
~1@2

. (32)

The 2-norm radius of stability is more di$cult to esti-
mate analytically in closed form. However, there is the
lower bound (Ipsen, 1997, Theorem 8.4)

r
2
(A)5

1

n
. (33)

Using Eqs. (13) and (17) gives upper bounds for B (the
solution of Eq. (1) with Q"I)

trB4

n (n#1)

2
and EBE

2
4n2 . (34)

The exact solution is

B"

1 0 0 2 0

0 2 0 2 0

. . . . . . . . .

0 . . n!1 0

0 . . 0 n

(35)

with trB"n(n#1)/2 and EBE
2
"n. In this example,

trB achieves the upper bound. The upper bound for EBE
2

is an overestimate but captures the behavior that as
n goes to in"nity, B is unbounded.

4. Conclusions

New upper bounds for solutions of the discrete alge-
braic Lyapunov are presented. The bounds are applic-
able with no restrictions on A other than that its eigen-
values lie inside the unit circle. In particular, there are no
restrictions on the singular values of A or on the diag-
onalizability of A. The bounds are given in terms of the
resolvent of A, a quantity that is related to the radius of
stability of A and the pseudospectrum of A. The upper
bounds are computable when the large dimension of
A make direct solution of the DALE impossible. The
behavior of the new bounds is shown to be more realistic
than that of many previously known ones, in the sense

that the new bounds go to in"nity if and only if the
solution of the DALE is unbounded.
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