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Abstract

Ensemble data assimilation methods assimilate observations using state-space estimation

methods and low-rank representations of forecast and analysis error covariances. A key ele-

ment of such methods is the transformation of the forecast ensemble into an analysis ensemble

with appropriate statistics. This transformation may be preformed stochastically by treating

observations as random variables, or deterministically by requiring that the updated analysis

perturbations satisfy the Kalman filter analysis error covariance equation. Deterministic anal-

ysis ensemble updates are implementations of Kalman square-root filters. The nonuniqueness

of the deterministic transformation used in square-root Kalman filters provides a framework to

compare three recently proposed ensemble data assimilation methods.
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1. Introduction

Data assimilation addresses the problem of producing useful analyses and forecasts given imper-

fect dynamical models and observations. The Kalman filter is the optimal data assimilation method

for linear dynamics with additive, state-independent Gaussian model and observation error (Cohn

1997). An attractive feature of the Kalman filter is its calculation of forecast and analysis error

covariances, in addition to the forecast and analyses themselves. In this way, the Kalman filter pro-

duces estimates of forecast and analysis uncertainty, consistent with the dynamics and prescribed

model and observation error statistics. However, the error covariance calculation components of

the Kalman filter are difficult to implement in realistic systems because of (i) their computational

cost, (ii ) nonlinearity of the dynamics and (iii ) poorly characterized error sources.

The ensemble Kalman filter (EnKF), proposed by Evensen (1994), addresses the first two of

these problems by using ensemble representations for the forecast and analysis error covariances.

Ensemble size limits the number of degrees of freedom used to represent forecast and analysis

errors, and Kalman filter error covariance calculations are practical for modest-sized ensembles.

The EnKF algorithm begins with an analysis ensemble whose mean is the current state-estimate

or analysis and whose statistics reflect the analysis error. Applying the full nonlinear dynamics to

each analysis ensemble member produces the forecast ensemble; tangent linear and adjoint models

of the dynamics are not required. Statistics of the forecast ensemble represent forecast errors; in

its simplest form, the EnKF only accounts for forecast error due to uncertain initial conditions,

neglecting forecast error due to model deficiencies. The forecast ensemble mean and covariance

are then used to assimilate observations and compute a new analysis ensemble with appropriate

statistics, and the cycle is repeated. The new analysis ensemble can be formed either stochastically

(Houtekamer and Mitchell 1998; Burgers et al. 1998) or deterministically (Bishop et al. 2001;

Anderson 2001; Whitaker and Hamill 2002). Deterministic methods were developed to address
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the adaptive observational network design problem and to avoid sampling issues associated with

the use of “perturbed observations” in stochastic analysis ensemble update methods.

The EnKF and other ensemble data assimilation methods belong to the family ofsquare-root

filters (SRFs), and a purpose of this paper is to demonstrate that deterministic analysis ensemble

updates are implementations of Kalman SRFs (Bierman 1977; Maybeck 1982; Heemink et al.

2001). An immediate benefit of this identification is a framework for understanding and comparing

deterministic analysis ensemble update schemes (Bishop et al. 2001; Anderson 2001; Whitaker and

Hamill 2002). SRFs, like ensemble representations of covariances, are not unique. We begin our

discussion in Section 2 with a presentation of the Kalman SRF; issues related to implementation

of ensemble SRFs are presented in Section 3; in Section 4 we summarize our results.

2. The Kalman SRF

Kalman SRF algorithms, originally developed for space-navigation systems with limited com-

putational word length, demonstrate superior numerical precision and stability compared to the

standard Kalman filter algorithm (Bierman 1977; Maybeck 1982). SRFs by construction avoid

loss of positive definiteness of the error covariance matrices. SRFs have been used in Earth Sci-

ence data assimilation methods where error covariances are approximated by truncated eigenvector

expansions (Verlaan and Heemink 1997).

The usual Kalman filter covariance evolution equations are

Pf
k = MkP

a
k−1M

T
k + Qk , (1)

Pa
k = (I−KkHk)P

f
k , (2)

wherePf
k andPa

k are respectively then × n forecast and analysis error covariance matrices at

time tk, Mk is the tangent linear dynamics,Hk is the p × n observation operator,Rk is the

p × p observation error covariance,Qk is then × n model error covariance matrix andKk ≡
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Pf
kH

T
k

(
HkP

f
kH

T
k + Rk

)−1

is the Kalman gain;n is the dimension of the system state, andp is

the number of observations. The error covariance evolution depends on the state estimates and

observations through the tangent linear dynamicsMk. The propagation of analysis errors by the

dynamics with model error acting as a forcing is described by Eq. (1). Equation (2) shows how an

optimal data assimilation scheme uses observations to produce an analysis whose error covariance

is less than that of the forecast.

The forecast and analysis error covariance matrices are symmetric positive-definite matrices

and can be representedPf
k = Zf

kZ
fT
k andPa

k = Za
kZ

aT
k where the matricesZf

k andZa
k arematrix

square-rootsof Pf
k andPa

k respectively; other matrix factorizations can be used in filters as well

(Bierman 1977; Pham et al. 1998). A covariance matrix and its matrix square-root have the same

rank or number of nonzero singular values. When a covariance matrixP has rankm, there is an

n×m matrix square-rootZ satisfyingP = ZZT ; in low-rank covariance representations the rank

m is much less than the state-space dimensionn. This representation is not unique;P can also

be represented asP = (ZU)(ZU)T where the matrixU is anym ×m orthogonal transformation

UUT = UTU = I. The projection‖xTZ‖2 = xTPx of an arbitraryn-vectorx onto the matrix

square-rootZ is uniquely determined, as is the subspace spanned by the columns ofZ.

Covariance matrix square-roots are closely related to ensemble representations. The sample

covariancePa
k of an m-member analysis ensemble is given byPa

k = SST /(m − 1) where the

columns of then×m matrixS are mean-zero analysis perturbations about the analysis ensemble

mean; the rank ofPa
k is at most(m − 1). A matrix square-root of the analysis error covariance

matrixPa
k is the matrix of scaled analysis perturbation ensemble membersZa

k = (m− 1)−1/2S.

The Kalman SRF algorithm replaces error covariance evolution equations (1) and (2) with

equations for the evolution of forecast and analysis error covariance square-rootsZf
k andZa

k in a

manner that avoids forming the full error covariance matrices. If the model error covarianceQk is
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neglected, (1) can be replaced by

Zf
k = MkZ

a
k−1 . (3)

In the ensemble context, (3) means to apply the tangent linear dynamics to each column of the

Za
k−1, that is, to each scaled analysis perturbation ensemble member. Practically, (3) can be im-

plemented by applying the full nonlinear dynamics to each analysis ensemble member. For what

follows, we only assume that the forecast error covariance matrix square-rootZf
k is available and

do not assume or restrict that it be calculated from (3). Section 3b discusses more sophisticated

methods of generatingZf
k that can include estimates of model error and give a forecast error co-

variance matrix square-root whose rank is greater than the number of perturbations evolved by the

dynamical model.

Next, analysis error covariance equation (2) is replaced with an equation for the analysis er-

ror covariance square-rootZa
k. This equation determines how to form an analysis ensemble with

appropriate statistics. Initial implementations of the EnKF formed the new analysis ensemble by

updating each forecast ensemble member using the same analysis equations, equivalent to apply-

ing the linear operator(I−KkHk) to the forecast perturbation ensembleZf
k . This procedure gives

an analysis ensemble whose error covariance is(I−KkHk)P
f
k(I−KkHk)

T and includes analysis

error due to forecast error; the Kalman gainKk depends on the relative size of forecast and obser-

vation error, and the factor(I − KkHk) shows how much forecast errors are reduced. However,

in this procedure the analysis ensemble does not include uncertainty due to observation error and

so underestimates analysis error. Astochasticsolution to this problem proposed independently

by Houtekamer and Mitchell (1998) and Burgers et al. (1998) is to compute analyses using each

forecast ensemble member and, instead of using a single realization of the observations, to use an

ensemble of simulated observations whose statistics reflect the observation error. This method is
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equivalent to the analysis perturbation ensemble update

Za
k = (I−KkHk)Z

f
k + KkWk , (4)

whereWk is ap × m matrix whosem columns are identically distributed, mean-zero, Gaussian

random vectors of lengthp with covarianceRk/m. The perturbed observation analysis equation

(4) gives an analysis perturbation ensemble with correct expected statistics:〈
Za

k (Za
k)

T
〉

= (I−KkHk)P
f
k(I−KkHk)

T + KkRkK
T
k

= Pa
k .

(5)

However, the perturbed observation approach introduces an additional source of sampling error

that reduces analysis error covariance accuracy and increases the probability of underestimating

analysis error covariance (Whitaker and Hamill 2002). A Monte Carlo method avoiding perturbed

observations is described in Pham (2001). The singular evolutive interpolate Kalman (SEIK) filter

uses both deterministic factorization and stochastic approaches.

Kalman SRFs provide adeterministicalgorithm for transforming the forecast ensemble into

an analysis ensemble with consistent statistics. The “Potter method” for the Kalman SRF analysis

update (Bierman 1977) is obtained by rewriting (2) as

Pa
k = Za

kZ
aT
k =

[
I− Pf

kH
T
k

(
HkP

f
kH

T
k + Rk

)−1

Hk

]
Pf

k

= Zf
k

[
I− ZfT

k HT
k

(
HkZ

f
kZ

fT
k HT

k + Rk

)−1

HkZ
f
k

]
ZfT

k

= Zf
k

(
I− VkD

−1
k VT

k

)
ZfT

k ,

(6)

where we define them × p matrix Vk ≡
(
HkZ

f
k

)T

and thep × p innovation covariance matrix

Dk ≡ VT
k Vk + Rk. Then the analysis perturbation ensemble is calculated from

Za
k = Zf

kXkUk , (7)

whereXkXT
k = (I− VkD

−1
k VT

k ) andUk is an arbitrarym×m orthogonal matrix. As formulated,

the updated ensembleZa
k is a linear combination of the columns ofZf

k and is obtained by inverting

thep× p matrixDk and computing a matrix square-rootXk of them×m matrix (I−VkD
−1
k VT

k ).

7



3. Ensemble SRFs

a. Analysis ensemble

In many typical Earth Science data assimilation applications the state-dimensionn and the number

of observationsp are large, and the method for computing the matrix square-root of(I−VkD
−1
k VT

k )

and the updated analysis perturbation ensembleZa
k must be chosen accordingly. Adirectapproach

is to solve first the linear systemDkYk = HkZ
f
k for thep×m matrixYk, that is, to solve

(HkP
f
kH

T
k + Rk)Yk = HkZ

f
k , (8)

as is done in the first step of the PSAS algorithm (Cohn et al. 1998). Then, them × m matrix

I − VkD
−1
k VT

k = I − (HkZ
f
k)

TYk is formed, its matrix square-rootXk computed and applied to

Zf
k as in (7). Solution of (8), even whenp is large, is practical when the forecast error covariance

has a low-rank representation and the inverse of the observation error covariance is available (see

appendix). Iterative methods whose cost is on the order of the cost of applying the innovation

covariance matrix are appropriate when the forecast error covariance is represented by a correlation

model.

When observation errors are uncorrelated, observations can be assimilated one at a time or

serially (Houtekamer and Mitchell 2001; Bishop et al. 2001). For a single observation,p = 1,

Vk is a column-vector, and the innovationDk is a scalar. In this case, a matrix square-root of

(I− VkD
−1
k VT

k ) can be computed in closed form by taking theansatz

I−D−1
k VkV

T
k = (I− βkVkV

T
k )(I− βkVkV

T
k )T , (9)

and solving for the scalarβk, which givesβk =
(
Dk ± (RkDk)

1/2
)−1

. The analysis ensemble

update forp = 1 is

Za
k = Zf

k(I− βkVkV
T
k ) ; (10)
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see Andrews (1968) for a general solution involving matrix square-roots ofp × p matrices. At

observation locations, the analysis error ensemble is related to the forecast error ensemble by

HkZa
k = (1 − βkVT

k Vk)HkZ
f
k . The scalar factor(1 − βkVT

k Vk) has absolute value less than or

equal to one and is positive when the plus sign is chosen in the definition ofβk.

In Whitaker and Hamill (2002) the analysis perturbation ensemble is found from

Za
k = (I− K̃kHk)Z

f
k , (11)

where the matrix̃Kk is a solution of the nonlinear equation

(I− K̃kHk)P
f
k(I− K̃kHk)

T = Pa
k . (12)

In the case of a single observation, a solution of (12) is

K̃k =
[
1 + (Rk/Dk)

1/2
]−1

Kk = βkZ
f
kVk , (13)

where the plus sign is chosen in the definition ofβk. The corresponding analysis perturbation

ensemble update

Za
k = (I− K̃kHk)Z

f
k = (I− βkZ

f
kVkHk)Z

f
k = Zf

k(I− βkVkV
T
k ) , (14)

is identical to (10). Observations with correlated errors, e.g., radiosonde height observations from

the same sounding, can be handled by applying the whitening transformationR−1/2
k to the obser-

vations to form a new observation set with uncorrelated errors.

Another method of computing the updated analysis ensemble is to use the Sherman-Morrison-

Woodbury identity (Golub and Van Loan 1996) to show that

I− VkD
−1
k VT

k =
(
I + ZfT

k HT
k R−1

k HkZ
f
k

)−1

. (15)

Them×m matrix on the right hand side of (15) is practical to compute when the inverse observa-

tion error covariance matrixR−1
k is available. This approach avoids inverting thep× p matrixDk
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and is used in theensemble transform Kalman filter(ET KF) where the analysis update is (Bishop

et al. 2001)

Za
k = Zf

kCk(Γk + I)−1/2 ; (16)

CkΓkCT
k is the eigenvalue decomposition ofZfT

k HT
k R−1

k HkZ
f
k . Note that the matrixCk of or-

thonormal eigenvectors is not uniquely determined.1 Comparison with (15) shows thatCk(Γk +

I)−1CT
k is the eigenvalue decomposition ofI−VkD

−1
k VT

k and thus thatCk(Γk + I)−1/2 is a square-

root of (I− VkD
−1
k VT

k ).

In theensemble adjustment Kalman filter(EAKF) the form of the analysis ensemble update is

(Anderson 2001)

Za
k = AkZ

f
k ; (17)

the ensemble adjustment matrixAk is defined by

Ak ≡ FkGkC̃k(I + Γ̃k)
−1/2G−1

k FT
k , (18)

wherePf
k = FkG2

kF
T
k is the eigenvalue decomposition ofPf

k and the orthogonal matrix̃Ck is

chosen so that̃CT
k GkFT

k HT
k R−1

k HkFkGkC̃k = Γ̃k is diagonal.2 Choosing the orthogonal matrix̃Ck

to beC̃k = G−1
k FT

k Zf
kCk gives that̃Γk = Γk and that the ensemble adjustment matrix is

Ak = Zf
kCk(I + Γk)

−1/2G−1
k FT

k . (19)

The EAKF analysis update (17) becomes

Za
k = Zf

kCk(I + Γk)
−1/2G−1

k FT
k Zf

k , (20)

The EAKF analysis ensemble given by (20) is the same as applying the transformationG−1
k FT

k Zf
k

to the ET KF analysis ensemble. The matrixG−1
k FT

k Zf
k is orthogonal and is, in fact, the matrix

1For instance, the columns ofCk that span the(m−p)-dimensional null-space ofZfT
k HT

k R−1
k HkZ

f
k are determined

only up to orthogonal transformations if the number of observationsp is less than the ensemble sizem.
2The appearance ofG−1

k in the definition of the ensemble adjustment matrixA seems to require the forecast error
covariancePf

k to be invertible. However, the formulation is still correct whenGk is m′ ×m′ andFk is n×m′ where
m′ is the number of nonzero eigenvalues ofPf

k .
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TABLE 1. Summary of analysis ensemble calculation computational cost as a function of

forecast ensemble sizem, number of observationsp and state dimensionn.

Analysis method Cost

Direct O(m2p + m3 + m2n)

Serial O(mp + mnp)

ET KF O(m2p + m3 + m2n)

EAKF O(m2p + m3 + m2n)

of right singular vectors ofZf
k . Therefore,Ck(I + Γk)

−1/2G−1
k FT

k Zf
k is a matrix square-root of

(I− VkD
−1
k VT

k ).

Beginning with the same forecast error covariance, the direct, serial, ET KF and EAKF produce

different analysis ensembles that span the same state-space subspace and have the same covariance.

Higher order statistical moments of the different models will be different, a relevant issue for

nonlinear dynamics. The computation costs of the direct, ET KF and EAKF is seen in Table 1 to

scale comparably (see the appendix for details). There are differences in precise computational

cost; for instance, the EAKF contains an additional SVD calculation of the forecast with cost

O(m3 + m2). The computational cost of the serial filter is less dependent on the rank of the

forecast error covariance and more sensitive on the number of observations. This difference is

important when techniques to account for model error and control filter divergence, as described

in the next section, result in an effective forecast error covariance dimensionm much larger than

the dynamical forecast ensemble dimension.
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b. Forecast error statistics

In the previous section we examined methods of forming the analysis ensemble given a matrix

square-root of the forecast error covariance. There are two fundamental problems associated with

directly using the ensemble generated by (3). First, ensemble size is limited by the computational

cost of applying the forecast model to each ensemble member. Small ensembles have few de-

grees of freedom available to represent errors and suffer from sampling error that further degrades

forecast error covariance representation. Sampling error leads to loss of accuracy and underesti-

mation of error covariances that can cause filter divergence. Techniques to deal with this problem

are distance-dependent covariance filtering and covariance inflation (Whitaker and Hamill 2002).

Covariance localization in the serial method consists of adding a Schur product to the definition

of K̃ (Whitaker and Hamill 2002). Similarly, observations effecting analysis grid points can be

restricted to be near-by in the EAKF (Anderson 2001).

The second and less easily resolved problem with using the ensemble generated by (3) is the

neglect of model error and resulting underestimation of the forecast error covariance. Since there

is little theoretical knowledge of model error statistics in complex systems, model error parameter-

izations combined with adaptive methods are likely necessary (Dee 1995). When the model error

covarianceQk is taken to have large-scale structure, a reasonable representation is an ensemble or

square-root decompositionQk = Zd
kZ

dT
k whereZd

k is ann × q matrix. Then, a square-root ofPf
k

is then×m matrix

Zf
k =

[
MZa

k Zd
k

]
, (21)

wherem = me + q andme is the number of dynamically evolved forecast perturbations. With this

model error representation, ensemble size grows byq with each forecast/analysis cycle. Ensemble

size can be limited by computing the singular value decomposition of the ensemble and discarding

components with small variance (Heemink et al. 2001). A larger ensemble with evolved analysis
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error and model error could be used in the analysis step, and a smaller ensemble used in the dy-

namical forecast stage. When the model error covarianceQk is approximated as an operator, for

instance using a correlation model, Lanczos methods can be used to compute the leading eigen-

modes ofMkZa
k−1(MkZa

k−1)
T + Qk and formZf

k (Cohn and Todling 1996). Such a forecast error

covariance model would resemble those used in “hybrid” methods (Hamill and Snyder 2000). In

this case, the rank ofZf
k can be substantially larger than the forecast ensemble size, making the

serial method attractive. Monte Carlo solutions are another option as in Mitchell and Houtekamer

(2000) where model error parameters were estimated from innovations and used to generate real-

izations of model error. Perturbing model physics, as done insystem simulation, explicitly accounts

for some aspects of model uncertainty (Houtekamer et al. 1996).

4. Summary and Discussion

Ensemble forecast/assimilation methods use low-rank ensemble representations of forecast and

analysis error covariance matrices. These ensembles are scaled matrix square-roots of the error

covariance matrices, and so ensemble data assimilation methods can be viewed as square-root

filters (SRFs) (Bierman 1977). After assimilation of observations, the analysis ensemble can be

constructed stochastically or deterministically. Deterministic construction of the analysis ensem-

ble eliminates one source of sampling error and leads to deterministic SRFs being more accurate

than stochastic SRFs in some examples (Whitaker and Hamill 2002; Anderson 2001). SRFs are

not unique since different ensembles can have the same covariance. This lack of uniqueness is

illustrated in three recently proposed ensemble data assimilation methods that use the Kalman

SRF method to update the analysis ensemble (Bishop et al. 2001; Anderson 2001; Whitaker and

Hamill 2002). Identifying the methods as SRFs allows a clearer discussion and comparison of their

different analysis ensemble updates.

Accounting for small ensemble-size and model deficiencies remains a significant issue in en-
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semble data assimilation systems. Schur products can be used to filter ensemble covariances and

effectively increase covariance rank (Houtekamer and Mitchell 1998, 2001; Hamill et al. 2001;

Whitaker and Hamill 2002). Covariance inflation is one simple way of accounting for model error

and stabilizing the filter (Hamill et al. 2001; Anderson 2001; Whitaker and Hamill 2002). Hybrid

methods represent forecast error covariances with a combination of ensemble and parameterized

correlation models (Hamill and Snyder 2000). Here we have shown deterministic methods of in-

cluding model error into a square-root or ensemble data assimilation system when the model error

has large-scale representation and when the model error is represented by a correlation model.

However, the primary difficulty remains obtaining estimates of model error.

Nonuniqueness of SRFs has been exploited in Estimation Theory to design filters with desir-

able computational and numerical properties. An open question is whether there are ensemble

properties that would make a particular SRF implementation better than another, or if the only

issue is computational cost. For instance, it may be possible to choose an analysis update scheme

that preserves higher-order, non-Gaussian statistics of the forecast ensemble. This question can

only be answered by detailed comparisons of different methods in a realistic setting where other

details of the assimilation system such as modeling of systematic errors or data quality control may

prove to be as important.
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APPENDIX

Computational costs

Here we detail the computational cost scalings summarized in Table 1. All the methods require

applying the observation operator to the ensemble members to formHkZ
f
k , and we do not include

its cost. This cost is important when comparing ensemble and non-ensemble methods, particularly

for complex observation operators. The cost of computingHkZ
f
k is formallyO(mnp), but may be

significantly less whenHk is sparse or can be applied efficiently. We also assume that the inverse

observation error covarianceR−1
k is inexpensive to apply.

a. Direct method.

1. Solve(HkP
f
kH

T
k + Rk)Yk = HkZ

f
k for Yk. If R−1 is available, the solution can be obtained

using the Sherman-Morrison-Woodbury identity (Golub and Van Loan 1996)

(HkP
f
kH

T
k + Rk)

−1 = R−1 − R−1HkZ
f
k(I + (HkZ

f
k)

TR−1(HkZ
f
k))

−1(HkZ
f
k)

TR−1 ,

and only invertingm×m matrices. Cost:O(m3 + m2p).

2. FormI− (HkZ
f
k)

TYk. CostO(pm2).

3. Compute matrix square-root of them×m matrix I− (HkZ
f
k)

TYk. Cost:O(m3).

4. Apply matrix square-root toZf . Cost:O(m2n).

Total cost:O(m3 + m2p + m2n).

b. Serial method.

For each observation:
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1. FormD. Cost:O(m).

2. FormI− βVVT and apply toZf
k . Cost:O(nm).

Total cost:O(mp + mnp).

c. ET KF.

1. FormZfTHTR−1HZf . AssumeR−1 inexpensive to apply. Cost:O(m2p).

2. Compute eigenvalue decomposition ofm×m matrix. Cost:O(m3).

3. Apply toZf . Cost:O(m2n).

Total cost:O(m2p + m3 + m2n).

d. EAKF.

Cost in addition to ET KF is:

1. Eigenvalue decomposition ofPf (low-rank). Cost:O(m2n + m3).

2. FormFTZf . Cost:O(m2p).

Total cost:O(m2p + m3 + m2n).
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