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ABSTRACT

Ensemble and reduced-rank approaches to prediction and assimilation rely on low-dimensional
approximations of the estimation error covariances. Here stability properties of the forecast/
analysis cycle for linear, time-independent systems are used to identify factors that cause the
steady-state analysis error covariance to admit a low-dimensional representation. A useful
measure of forecast/analysis cycle stability is the bound matrix, a function of the dynamics,
observation operator and assimilation method. Upper and lower estimates for the steady-state
analysis error covariance matrix eigenvalues are derived from the bound matrix. The estimates
generalize to time-dependent systems. If much of the steady-state analysis error variance is due
to a few dominant modes, the leading eigenvectors of the bound matrix approximate those of
the steady-state analysis error covariance matrix. The analytical results are illustrated in two
numerical examples where the Kalman filter is carried to steady state. The first example uses
the dynamics of a generalized advection equation exhibiting non-modal transient growth.
Failure to observe growing modes leads to increased steady-state analysis error variances.
Leading eigenvectors of the steady-state analysis error covariance matrix are well approximated
by leading eigenvectors of the bound matrix. The second example uses the dynamics of a
damped baroclinic wave model. The leading eigenvectors of a lowest-order approximation of
the bound matrix are shown to approximate well the leading eigenvectors of the steady-state
analysis error covariance matrix.

1. Introduction operational-scale problems, and approximate
methods must be used. Primary sources of diffi-
culty are the large number of degrees of freedomAccurate and realistic representations of
present in numerical forecast models and poorforecast and analysis errors are key to the perform-
understanding of forecast model error, making itance of atmospheric data assimilation and
infeasible to store and evolve the complete errorensemble prediction systems. Unfortunately,
covariances.forecast and analysis error statistics such as the

Data assimilation systems combine observa-covariance are impractical to compute directly for
tions with a forecast model first guess to produce
an analysis or estimate of the state of the atmo-
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to the specification of the forecast error statistics, other hand, future growing modes (singular vec-
tors of the dynamics), while presenting optimaland misspecification of them increases analysis

error levels. In current operational practice, the growth, intrinsically have little to do with the

analysis error. If information about the analysisforecast error covariance is generally approxi-
mated by an analytical state-independent model errors is available, the singular vectors of the

dynamics can be used to identify the analysisdepending on a number of estimated parameters

(Courtier et al., 1998; Rabier et al., 1998; Dee and errors that will contribute most to forecast error
(Barkmeijer et al., 1998; Swanson et al., 1998). InDa Silva, 1999; Dee et al., 1999). Though the

details of these error models vary, their simplicity any case, since an ensemble covariance is by

construction low-rank, it is useful to identify fac-means that realistic features, such as anisotropy
and flow-dependent structure, are not included. A tors that lead to the actual error covariances

having good low-dimensional approximations.general way of including some of these features is

through reduced-rank methods, where evolution In this article the analysis error covariance
structure is examined in the context of linear,of the error covariances or the error covariances

themselves are replaced by low-dimensional rep- time-independent dynamics and observation oper-

ators. The aim is to understand under what condi-resentations (Evensen, 1994; Cohn and Todling,
1996; Cane et al., 1996; Verlaan and Heemink, tions the analysis error covariance admits a low-

dimensional representation. Such information1997).

Ensemble prediction schemes produce an would be useful in both ensemble forecast systems
and data assimilation systems, though our resultsensemble of forecasts, each starting from slightly

different initial conditions. The quality of the in this idealized context can only give qualitative
information. Our approach is to identify errorsensemble forecast, particularly for short to

medium-range forecasting, is sensitive to the which are not efficiently reduced by the forecast/

analysis cycle. If the system is observable and thestructure of the perturbations used to form
the ensemble of initial conditions. Ideally, the Kalman filter, or more generally a stable data

assimilation method, is used, then all analysisensemble of initial conditions should reflect the

errors present in the analysis. Operational errors are eventually reduced, that is to say, the
forecast/analysis cycle is exponentially stable. Aensemble forecast systems use state-dependent ini-

tial perturbations that are related to either past linear system and its measurements is completely

observable when it is possible to reconstructor future growing modes of the dynamics (Toth
and Kalnay, 1993; Molteni et al., 1996). The uniquely the state of the system from past measure-

ments (Cohn and Dee, 1988). However, it may beexistence of a distinction between past and future

growing modes stems from the time-dependence the case that the damping of analysis errors by
the forecast/analysis cycle is slow or that analysisand non-normality of the tangent linear dynamics

which is linearized about a non-linear, time-vary- errors may be amplified non-modally on transient

time-scales before being reduced. Only in specialing trajectory. If the dynamics were time-independ-
ent and normal (a linear operator is normal when cases is the behavior of forecast/analysis cycle

purely modal, for instance if the dynamics isit has a complete set of orthogonal eigenvectors),

both past and future growing modes would coin- normal, all variables are observed, and the obser-
vational and forecast model errors are homogen-cide with the eigenvectors or normal modes. Time-

independent dynamics, for instance, the result of eous (Daley and Ménard, 1993).

Our motivation is complementary to that oflinearizing about a mean state or of statistical
modeling, will typically be non-normal and present Swanson et al. (1998), who studied the analysis

error structure of 4-dimensional variational assim-behavior that is primarily non-modal (Blumenthal,

1991; Whitaker and Sardeshmukh, 1998). The ilation applied to a non-linear quasi-geostrophic
model. There, in the perfect model setting with allrationale for using past growing modes (approxi-

mate Lyapunov vectors) as initial perturbations is state variables observed, it was found that in the
limit of a long assimilation period, analysis errorsthat they represent the analysis error due to errors

in the first guess. However, there is no guarantee projected primarily onto Lyapunov vectors. These

Lyapunov vectors were found to project weaklythat past growing modes efficiently sample the
space of rapidly growing analysis errors. On the onto the leading right singular vectors of the

Tellus 52A (2000), 5



-     535

dynamics, although this part of the analysis error the system from one analysis time to the next. The
matrix H

k
is the observation operator or general-was responsible for most of the forecast error.

Distinguishing features of the present work are ized interpolation operator that maps forecast

state variables to observation space. The dynamicstreatment of the interaction of observing pattern
and dynamics, and analytical results that include and observation operator are taken to be linear

and also time-independent for most of our results.model error but do not require its complete details.

We make extensive use of the fact that the This assumption on H
k
=H corresponds to a fixed,

in situ, observing system. The assumption of linearsteady-state analysis error covariance matrix satis-
fies a discrete algebraic Lyapunov equation dynamics (linearized about a non-linear trajectory)

is not unreasonable for short times, i.e., up to 1(DALE) in the case of time-independent dynamics,
observation operators, forecast model error and or 2 days in atmospheric models (Courtier and

Talagrand, 1987). Stochastically forced linearobservation error covariances. Investigation of the

DALE permits the identification and estimation models are also sometimes appropriate in an
average sense (Blumenthal, 1991; Xue et al., 1994).of the dominant part ( leading eigenvalues and

eigenvectors) of the steady-state analysis error The time-independence of the dynamics, Y
k
=Y,

is a stronger restriction, although recent studiescovariance and understanding of its dependence
on the dynamics and observing pattern. The tran- have shown that a simple model linearized

about the long-term mean flow and stochasticallysient and asymptotic behavior of the analysis

errors, as measured by the bound matrix, provides forced may be capable of reproducing aspects of
observed storm-track variability (Whitaker andrigorous estimates for the eigenvalues and eigen-

vectors of the steady-state analysis error covari- Sardeshmukh, 1998). In Section 8 we show how
the time-independence requirements on theance. A bound matrix giving time-dependent

estimates for the time-dependent analysis error dynamics and observation operator can be

relaxed.covariance can also be defined when the dynamics,
observing pattern and error covariance sources The state estimate ya

k
and the observations yo

k
are real vectors of length n and p respectively,vary in time.

The organization of this paper is as follows. In usually with pHn; Y
k

and H
k

are real n×n and
p×n matrices respectively; the gain K

k
is an n×pSection 2 the generic linear, time-independent

forecast and analysis system is described. In matrix. Typically in statistical interpolation and

3D-Var data assimilation methods the gain at timeSection 3 the bound matrix is defined and
employed to investigate the steady-state analysis t

k
is effectively given by

error covariance matrix. Sections 4 and 5 illustrate K
k
=Sf

k
HT
k
(H

k
Sf
k
HT
k
+R

k
)−1, (3)

the results of Section 3 by applying the Kalman
where Sf

k
is a model of the forecast error covari-filter to two simple dynamical models: a general-

ance and R
k

is a model of the observation errorized advection equation and a model for damped
covariance (Cohn, 1997; Cohn et al., 1998).baroclinic waves. Finally, a summary and conclu-

We assume the observation error to be additivesions are given in Section 6. Some technical details
and white in time with mean zero and p×pand the time-dependent problem are presented
covariance matrix R

k
, and the forecast model errorin Section 8.

to be additive and white in time with mean zero
and n×n covariance matrix Qm

k
. In other words,

2. Linear time-independent forecast/analysis denoting the true state of the atmosphere by yt
k
,

cycle the observation vector yo
k

is related to the true
state by

A general linear forecast/analysis cycle is yo
k
=H

k
yt
k
+bo

k
, 
bo

k
�=0,


bo
k
(bo
l
)T�=d

kl
R
k
,

(4)yf
k
=Y

k
ya
k−1 , (1)

ya
k
=yf

k
+K

k
(yo
k
−H

k
yf
k
), (2)

and the evolution of the true state is given by
where the forecast, analysis and observation vec-

tors at time step t
k

are denoted by yf
k
, ya

k
and yo

k
yt
k
=Y

k
yt
k−1+bm

k
, 
bm

k
�=0,


bm
k

(bm
l

)T�=d
kl

Qm
k

;
(5)

respectively. The dynamics matrix Y
k

advances
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bo
k

and bm
k

are the observation and forecast model and satisfies
error respectively; d

kl
is the Kronecker delta.

P=APAT+Q. (9)
Additionally the forecast model and observation

errors are assumed to be uncorrelated with each The linear matrix equation (9) is known as the
other, 
bm

k
(bo
l
)T�=0, and with the initial error, discrete algebraic Lyapunov equation (DALE;


bm
k

(yt
0
−yao)T�=0 and 
bo

k
(yt
0
−yao)T�=0. We Gajić and Qureshi, 1995). Some properties of its

have neglected biases, which may be a particularly solution will be discussed in Section 3.
important part of the model error and should be
estimated separately when present (Dee and

Da Silva, 1998). 3. Theory
Under these assumptions, the time evolution of

the analysis error y
k
¬yt

k
−ya

k
is given by 3.1. Normal system matrix

When the steady-state system matrix A isy
k
=A

k
y
k−1+b

k
, 
b

k
�=0,


b
k
bT
l
�=d

kl
Q
k
, 
 y0bT

l
�=0,

(6) normal, the eigenvectors z
i
of A form a complete

and orthonormal basis, and Q can be decomposed

in this basis aswhere the system matrix A
k

and the system error
covariance matrix Q

k
are defined by

Q= ∑
n

i=1
∑
n

j=1
(z*
i

Qz
j
)z
i
z*
j
. (10)

A
k
¬(I−K

k
H
k
)Y

k
,

Q
k
¬ (I−K

k
H
k
)Qm

k
(I−K

k
H
k
)T+K

k
R
k
KT
k
;

(7) The solution of (9) is then

P= ∑
2

k=0
AkQ(AT )k= ∑

n

i=1
∑
n

j=1
z*
i
Qz

j
1−l

i
(A)l

j
(A)

z
i
z*
j
;I is the n×n identity matrix. The system matrix

and system error covariance matrix both depend
(11)

on the gain matrix K
k
. The system matrix A

k
the notation l

i
(A) is used to denote the ith eigen-propagates analysis errors from one analysis time

value of the matrix A, where the eigenvalues areto the next. Roughly speaking, one expects analysis
ordered in decreasing magnitude; z

i
is the corre-errors to grow in the forecast step (Y

k
) and to be

sponding eigenvector of A and z*
i

the conjugatereduced by the analysis step (I−K
k
H
k
). The stoch-

transpose. Eq. (11) shows that when A is normal,astic forcing part b
k
of the analysis error propaga-

P is controlled by the proximity of the eigenvaluestion (6), with error covariance Q
k
, is due to both

of A to the unit circle and by the relationshipmodel and observation errors.
between the eigenvectors of A and Q. For instance,Henceforth we assume time-independence of the
the lower bounddynamics and the observation operator, Y

k
=Y

and H
k
=H, and also of the model and observation

error covariances, Qm
k
=Qm and R

k
=R. In this l1 (P)�z*

1
Pz1=

z*
1

Qz1
1−|l1 (A) |2

(12)
case, if the system (4), (5) is observable and if the

(time-dependent) Kalman gain is used, then shows that if the leading eigenvalue of the steady-
A
k
�A2¬A and Q

k
�Q2¬Q, and the eigen- state system matrix, l

1
(A), is near the unit circle,

values of the steady-state system matrix A all lie and if the projection z*
1
Qz1 of the steady-state

inside the unit circle (Kalman, 1960). Suboptimal system error covariance Q onto the corresponding
choices of the gain matrix may also yield an eigenvector z

1
does not happen to be small, then

asymptotic steady state (Cohn and Todling, 1996). P projects strongly onto the leading eigenvector
In any case, we assume that A

k
and Q

k
tend to z

1
of the system matrix and the leading eigenvalue

steady state, and that the steady-state system of P is large. In other words, the steady-state
matrix A¬A

2
is stable, i.e., all its eigenvalues lie analysis error covariance P must have a large

inside the unit circle. The steady-state analysis eigenvalue when the steady-state system matrix A
error covariance P is then given by the large-time has a weakly-damped eigenmode that is well-
limit (see Section 8) excited by the steady-state system error forcing.

Alternatively, z*
1
Qz1 being large causes z*

1
Pz1 to

P¬ lim
k�2


 y
k
yT
k
�, (8)

be large even when |l1 (A) |H1.
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The connection between the eigendecomposi- system error b
k
. In the general case when A is

non-normal, |xTANy | attains its largest value whentions of P and A is especially simple when the
eigenvectors of A are also eigenvectors of Q x and y are, respectively, the leading eigenvectors

of AN (AT)N and (AT )NAN (equivalently, the leading(equivalently when A and Q commute), in which
case eq. (11) simplifies to: left and right singular vectors of AN ). The stability

of A does not constrain dANd2 to be monotonically

decreasing as N increases. As a consequence,P= ∑
n

i=1
z*
i
Qz

i
1−|l

i
(A) |2

z
i
z*
i
; (13)

dANy
k
d2 need not be less than dy

k
d2 ; analysis

the eigenvalues of P are (z*
i

Qz
i
)(1−|l

i
(A) |2 )−1. errors in the steady-state regime can

In this case, when the leading eigenvalues of A grow on transient time-scales even in the absence
are near the unit circle and the associated leading of observational and model error forcing.
eigenvectors of A are well-excited by the system Asymptotically, however, dANd2 must behave like
error, P will have large eigenvalues with eigenvec- |l1 (A) |N (Horn and Johnson, 1985):
tors that lie in the space spanned by the leading
eigenvectors of A. lim

N�2
exp

1

N
logdANd2=|l1 (A) |, (15)

In general, non-normality of the dynamics and

inhomogeneity of the observing network cause A and eventually analysis errors are reduced. In this
limit of large N, the leading left and right singularto be non-normal, and there is no simple connec-

tion between the eigenvectors of P and those of vectors of AN are approximately the leading eigen-

vectors of A and its adjoint AT respectivelyA. However, as will be shown in the next subsec-
tion, there is still a connection between the leading (Farrell, 1989).

In the steady-state regime, the maximumeigenvectors of P and more general stability prop-

erties of the steady-state system matrix A. response in the x-direction after N forecast/ana-
lysis cycles applied to a unit vector y is

3.2. Non-normal system matrix dxTANd2= max
dyd
2
=1

|xTANy |=√(xTAN) (xTAN)T.
When A is non-normal its stability properties (16)

may not be well-described by its eigenvalues and
A measure of the maximum response in theeigenvectors (Trefethen et al., 1993; Farrell and
x-direction accumulated over all times-scales isIoannou, 1996; Tippett et al., 2000). The damping
obtained by summing the square of (16) over N:of analysis errors may be much less efficient than

predicted by the eigenvalues of A, and the domin-
∑
2

N=0
dxTANd2

2
= ∑

2

N=0
xTAN (AT )Nx=xTBx, (17)ant error structures may not be described well by

eigenvectors of A. To obtain a more useful measure
where the bound matrix B is defined by

of the stability properties of A, we examine the

quantity xTANy for any two real unit vectors x B= ∑
2

N=0
AN (AT )N. (18)

and y. This quantity gives the response in the
x-direction to an analysis error in the y-direction Since B is a symmetric matrix, its eigenvalues have
after N forecast/analysis cycles in the steady-state a ‘‘minimax’’ characterization (Golub and Van
regime. The maximum of |xTANy | defines the Loan, 1996),
Euclidean matrix norm of AN,

l
i
(B)= max

dim(D)= i
min
xµD

xTBx
xTx

. (19)dANd
2
¬ max

dxd
2
=dyd

2
=1

|xTANy |. (14)

When A is normal and stable, dANd2=|z*
1

ANz1 |= Therefore the eigenvectors of the bound matrix B
order the directions in state space according to|l1 (A) |N, and dANd2 decays monotonically and

exponentially as N increases since |l1 (A) |<1. the maximum response in those directions. In this

sense, the eigenvectors of B play a rôle similar toTherefore when A is normal and stable,
dANy

k
d2∏dy

k
d2 and the analysis error evolution that of Lyapunov vectors, identifying directions in

state space associated with accumulated growth.equation (6) shows that near steady state, any

transient analysis error growth must be due to the It is also useful to know which system error
forcing produces the maximum or minimumobservational and model error forcing of the
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steady-state analysis error variance since, as (7) 3.4. Estimates derived from approximation of the
bound matrixshows, modifying the observing pattern can

change the portion of the system error covariance
For systems where n is large, calculating the

due to model error. Applying the above arguments
bound matrix B directly may be as impractical as

to the quantity dANyd2 shows that the eigenvec-
calculating P. However, if the series in (18) con-

tors of the matrix BT given by (Tippett and
verges rapidly, a few terms may provide a good

Marchesin, 1999a)
approximation for B, and therefore an additional

theoretical tool. Iterative Lanczos methods can beBT= ∑
2

k=0
(AT )kAk, (20)

used to calculate the leading eigenvalues and
eigenvectors of the partial sum (Golub and Vanorder the directions of state space according to
Loan, 1996). The partial sum B

L
is defined bythe analysis error variance produced by system

eithererror forcing in those directions. When A is non-
normal, the eigenvectors of B and BT are generally

B
L
= ∑

L

k=0
Ak(AT )k, (24)different, and therefore the directions of optimal

response and forcing are different.
or recursively by B

L
=AB

L−1AT+I, B0=I. The
cost of calculating eigenvectors of B

L
with an3.3. Estimates derived from the bound matrix

iterative method is about a factor L greater than
Given only limited information about the that of iteratively calculating singular vectors of

steady-state system error covariance Q, the bound A. Monte Carlo simulations of (6) are another
matrix can be used to estimate the steady-state method of calculating B (see Section 8). However,
analysis error covariance P. Rigorous upper and it is difficult to estimate a priori the number of
lower matrix bounds for P are (Tippett and terms needed to approximate B to a given accu-
Marchesin, 1999a; see (54) of Section 8 for the racy. The relation
corresponding bounds in the time-dependent case):

dB−B
L
d2=dAL+1B(AT )L+1d2∏dAL+1d2

2
dBd2l

n
(Q)B∏P∏l

1
(Q)B; (21) (25)

for two symmetric matrices X and Y, X∏Y means
shows that the number of terms in (24) needed to

that Y−X is positive semidefinite. When the ratio
approximate B to a given accuracy depends on

l1 (Q)/l
n
(Q) is near unity, these upper and lower

how rapidly dALd2 tends to zero. On the other
bounds tightly restrict P. If more information

hand, the size of dB−B
L
d2 does not necessarily

about Q is available, tighter bounds can be
determine how well the eigenvectors of the trun-

obtained (see (56) of Section 8 and Tippett and
cated series B

L
approximate those of B, for even

Marchesin, 1999a). The estimates in (21) can be
when dB−B

L
d2 is not small, B and B

L
may have

used to derive upper and lower bounds for the
approximately the same eigenvectors. For a

eigenvalues of P and therefore for the trace of P:
normal system matrix, B and B

L
have precisely

l
n
(Q)l

i
(B)∏l

i
(P)∏l1 (Q)l

i
(B), (22) the same eigenvectors, independently of L �1; the

error patterns established after a single time stepl
n
(Q) tr B∏tr P∏l1 (Q) tr B, (23)

with the steady-state system matrix A are not
where tr denotes the trace. Again, the upper and

subsequently altered. When A is non-normal the
lower bounds are tight when the spectrum of Q is

situation is less clear, though there may be situ-
fairly flat.

ations where the eigenvectors of B
L

approximate
When the bounds in (21) are tight and P has a

those of B for moderate values of L . We explore
well-separated set of leading eigenvalues, the lead-

this point further in the numerical experiments of
ing eigenvectors of P and B span approximately

Subsection 5.2.
the same subspaces (Theorem 7.2.4 of Golub and

The simplest approximation for the bound
Van Loan, 1996). However, if P does not have

matrix (and one which allows some analytical
a well-separated set of leading eigenvalues,

treatment) is to take only the first two terms of
P−l1 (Q)B may be small without the leading

the series in (18):
eigenvectors of P and B spanning approximately
the same subspaces. B#B

1
=I+AAT. (26)
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The eigenvalues of B1 are (1+s2
i
(A)) and the 4.1. Model

eigenvectors are the left singular vectors of A; the
The generalized 1-dimensional advection equa-

singular values of A are defined by s2
i
(A)=

tion considered is
l
i
(AAT ). Since B1∏B, from (22) one has the lower

bound m
t
+am

x
+c∞(x)m=0, (30)

with initial and periodic boundary conditionsl
i
(P)�l

n
(Q)l

i
(B1 )=l

n
(Q) (1+s2

i
(A)), (27)

m(x, t=0)=m
0
(x), m(x=0, t)=m(x=1, t),

and summing over i gives
(31)

tr P�l
n
(Q) (1+tr AAT ). (28) respectively. The quantity a plays the role of a

constant zonal velocity and −c∞(x) that of aThese two estimates highlight the role of non-
zonally varying vertical velocity. When the verticalmodal growth (s

i
(A)>1) on the size of the eigen-

velocity is identically zero, c∞(x)¬0, the dynamicsvalues of P. On the other hand, if A is normal, or
is normal. As we shall show, the larger the verticalnearly normal in the sense that non-modal growth
velocity, the more non-normal is the dynamics.does not exceed the modal growth (s1 (A)=

The physical basis for the model is the following.|l1 (A) |<1), bounds for the eigenvalues of P are
Considering an xz-plane representing the zonal(Mori et al., 1982)
and vertical directions, a 2-dimensional non-diver-
gent wind field can be written in terms of a stream

l
n
(Q)

|l
n
(A) |2

1−|l
n
(A) |2

+l
i
(Q) function y(x, z) as −y

z
x̂+y

z
ẑ. Suppose that the

stream function has the form y(x, z)=−az−c(x);
a is the constant zonal velocity; the vertical vel-∏l

i
(P)∏l

i
(Q)+l1 (Q)

|l1 (A) |2
1−|l1 (A) |2

. (29)
ocity is −c∞(x) where ∞ is used to indicate the

derivative with respect to x. The streamlines of
When |l1 (A) |H1, as might be expected for an such a wind field are shown in Fig. 1 for c(x)
accurate and dense observing network for taken to be
instance, (29) suggests that the eigenvalues of the
steady-state analysis error covariance P are deter-

c(x)=
c0
16

(1+cos 2p(x−0·5))4, (32)
mined more by the steady-state system error
covariance Q than by the steady-state system

with c0=0.15 and a=1/9. These non-dimensional
matrix A.

parameters correspond to a zonal length scale of
3105 km, a vertical length scale of 1 km, a zonal

4. Generalized advection model

The analytical results presented above are illus-
trated in numerical experiments with two different

dynamical models. We have chosen dynamics that
are exponentially stable to demonstrate that even
in the absence of modal instability, non-modal

growth is sufficient to cause the steady-state ana-
lysis error covariance to have dominant parts. The
first dynamical model is a 1-dimensional advection

equation with a term added to cause non-modal
growth. Simple advection equations have been a

valuable theoretical tool in data assimilation
(Daley, 1992; Daley and Ménard, 1993; Cohn,
1997; Mitchell and Daley, 1997). The simplicity of
the dynamics allows the eigenvectors and singular Fig. 1. The streamlines of y(x, z)=−az−c(x) for c(x)

given by (32).vectors to be computed analytically.
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velocity of 15 m/s, a maximum vertical velocity of Using the definitions in (33) and (35),
10 cm/s and a time-scale of 6.4 h. Suppose that a

Y
t
Y*
t
{m(x)}=m(x) exp[2(c(x−at)−c(x))/a].quantity m̃ is advected by such a wind field and

(36)that initially the z-dependence of m̃ has the form
m̃(x, z, t=0)=m(x, t=0) exp (−z). Then the equa- The operator Y

t
Y*
t

is a multiplication operator
tion for the time evolution of m is (30). and its spectrum consists of the values taken on by

The operator Y
t

that advances the solution t the multiplying factor exp[2(c(x−at)−c(x))/a])
time units is given by for 0∏x∏1 (Halmos, 1967, Problem 52)‡.

Although the eigenvalues of the operator Y
t
areY

t
{m(x, t)}=m(x−at, t) exp[(c(x−at)−c(x))/a].

necessarily the complex conjugates of those of its(33)
adjoint Y*

t
, the eigenfunctions of Y

t
and Y*

t
can

An ‘‘exact’’ discrete dynamics Yd
t

is obtained by be very different, leading to transient growth and
restricting Y

t
to act on functions defined on a limiting predictability (Farrell, 1989), If c∞(x)¬0,

spatially regular grid with spacing Dx such that then Y
t

is normal, and the eigenfunctions of Y
tthe Courant number at/Dx is an integer. If the and Y*

t
are the same. More generally the cosine

time-step t is small compared to the advection S of the angle between the eigenfunctions of Y
ttime-scale 1/a, the factor exp[(c(x−at)−c(x))/a] and Y*

t
is given by

can be approximated by exp(−c∞(x)t) and in a
single time-step the solution is seen to grow in 1

S2
= P 1

0
P 1
0

exp (2(c(x)−c(y))/a) dx dy. (37)
regions where the vertical velocity is positive
(−c∞(x)>0). This behavior is consistent with the

When the vertical velocity −c∞(x) is large, thephysical interpretation of m̃ having vertical density
cosine S will be small, indicating that the eigen-stratification that decreases with height. This
functions of Y

t
and Y*

t
are nearly orthogonal.growth is not evident from the eigenvalues of Y

t
.

Similarly, the smaller the zonal velocity a is, theThe eigenvalues of Y
t
are exp(−2patli) with cor-

smaller S is. The quantity S is also a measure ofresponding eigenfunctions exp[−c(x)/a+2plxi],
the sensitivity of the eigenvalues to perturbationsfor any integer l. Regardless of the vertical velocity
of the operator Y

t
(Golub and Van Loan, 1996,−c∞(x), all the eigenvalues of Y

t
have unit modu-

Subsection 7.2.2).lus. Only in the case that c∞(x)¬0 and hence Y
t The singular values of the spatially discreteis normal, does this property actually imply that

dynamics Yd
t
are obtained by restricting the valuessolutions neither decay nor grow in time.

of x to be grid points. That is, according to
eq. (36), the n singular values s

m
of Yd

t
are (not

4.2. Singular values and vectors

The effect of applying the operator Y
t

once is
explained by its singular values (or more generally ‡ In general, the spectrum of an operator can be

divided into three disjoint sets: the point spectrum, thes-numbers; Gohberg and Kreı̆n, 1969). The singu-
residual spectrum and the continuous spectrum. For alar values of Y

t
are the square roots of the

multiplication operator A induced by a multiplier w:eigenvalues of Y
t
Y*
t

(or of Y*
t

Y
t
). The adjoint of

(i ) the point spectrum is equal to the set of complex
equation (30) with respect to the usual inner

numbers for which w−1 (l) has positive measure; (ii ) the
product on the space of square integrable functions residual spectrum is empty; and (iii ) the continuous spec-
is trum is the essential range of w minus the point spectrum

(Halmos, 1967, Problem 66). An eigenvalue l is in the
m
t
−am

x
+c∞(x)m=0. (34) point spectrum of A if and only if there exists a function

f such that Af =lf. For an eigenvalue l in the continu-
Hence, the adjoint operator Y*

t
is

ous spectrum there is no eigenfunction but there is a
sequence of approximate eigenfunctions f

j
such thatY*

t
{m(x, t)}=m(x+at, t)

dAf
j
−l f

j
d�0. Therefore, for non-constant c(x) the

operator Y
t
Y*
t

has a continuous spectrum and no eigen-×exp[−(c(x+at)−c(x))/a]. (35)
functions but does have approximate eigenfunctions, for

The eigenvalues of Y*
t

are exp (2patli) with corre- example those given by the eigenvectors of the discrete
approximation Yd

t
Yd*
t

.sponding eigenfunctions exp[c(x)/a+2plxi].
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ordered by size): 4.3. Kalman filter experiments

Three sets of experiments were performed. Ins
m
=exp[(c(x

m
−at)−c(x

m
))/a],

x
m
= (m−1)/n, m=1, .. . , n.

(38) all experiments, the solution of the DALE is
obtained by iterating the time-dependent Kalman

This expression shows that if atH1, the size of filter to steady state and using the resulting steady-
the largest singular value is an (exponentially) state gain K to compute the system matrix. In the
increasing function of the maximum vertical vel- 1st set of experiments we take c∞(x)¬0 and the
ocity and the time-step t. In Fig. 2, c(x) and s(x)= dynamics Yd

t
is normal; an inhomogeneous observ-

exp[(c(x−at)−c(x))/a] are plotted for c(x) given ing pattern is the source of system matrix non-
by (32) and t=0.5, 1.0, 2.0. For larger values of t normality (Daley, 1992). In the 2nd and 3rd sets
the magnitude of the largest singular value of experiments, non-normal dynamics Yd

t
is con-

increases and its localization moves upstream. sidered and c(x) is that given in (32). The 2nd and
The n×n matrices Yd

t
Yd*
t

and Yd*
t

Yd
t
are diag- 3rd sets differ in their choices of observing pattern.

onal, a reflection of the fact that Y
t
Y*
t

and In the 2nd set of experiments, the nine trailing left
Y*
t

Y
t

are multiplication operators; the squared singular vectors of the dynamics are observed,
singular values s2

m
appear along the diagonal. The leading to a system matrix with large singular

diagonal entries of Yd*
t

Yd
t

are those of Yd
t
Yd*
t

values. In the 3rd set of experiments, the nine
shifted by atn units, the Courant number, as can leading left singular vectors of the dynamics are
be seen by comparing the expression for Y*

t
Y
t

observed. This is equivalent to observing upstream
with that of Y

t
Y*
t

given in (36). Thus the left (experiment 2) and in the middle (experiment 3)
singular vector of Yd

t
corresponding to s

m
is an of the instability (Todling and Ghil, 1996).

n-vector with value 1 at the mth position and zero Observations are assimilated at unit time intervals,
elsewhere, and the right singular vector corre- t=1; the t subscript and the d superscript on Yd

t
sponding to the same singular value has 1 at the will be dropped from the notation. A grid spacing
(m−atn) position and is elsewhere zero. When of Dx=1/36 is used, so that n=36. In all cases,
there are repeated singular values, the associated the observations are made at grid points and the
singular vectors of Yd

t
are not uniquely defined; number of observations p=9 is 1/4 of the total

only the subspace they span is uniquely defined. number of grid points.
The localized structure of the singular vectors seen The observation error is taken to be spatially
here is observed, to some extent, in more physically homogeneous and uncorrelated, R=0.025I

p
for

realistic models (Buizza et al., 1997). The left and all experiments; I
p

is the p×p identity matrix. We
right singular vectors of Yd

t
are different in general consider two types of model error covariances:

but for this problem it is only their ordering that one with Qm=0.025I, for which errors at different
is different. grid points are uncorrelated, and another whose

entries are constructed as

Qm
ij
=d

ij
+r(d

ij
; L ), (39)

where d
ij

is the distance between the ith and jth
grid points and r is the compactly supported
piecewise-rational correlation function with cor-

relation length L =0.2 (Gaspari and Cohn, 1999,
eq. 4.10). The trace of Qm is normalized to 0.025n.
A 36×36 ‘‘checkerboard plot’’ of the elements of

the Qm given by eq. (39) is shown in Fig. 3.
In the first experiment c∞(x)¬0 and the dynamics

is normal. Observations are taken at the first 9
grid points. Fig. 4a shows the singular values and
the absolute values of the eigenvalues of theFig. 2. Solid line c(x); s(x)=exp[(c(x−at)−c(x))/a] for
steady-state system matrix A for Qm=0.025I.t=0.5 (dotted line), t=1.0 (dashed line), and t=2.0

(dotted-dashed line). Though Y is normal, the inhomogeneous observ-
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modulus, demonstrating that asymptotically all

analysis errors are reduced.

The spectra of the observation and model error

covariance matrices R=0.025I
p

and Qm=0.025I
are flat by construction. However, the spectrum

of P shown in Fig. 4b varies by an order of

magnitude between its largest and smallest eigen-

values (note the logarithmic scale on panel b).

This feature is similar to that seen in the example

of Tippett and Marchesin (1999b) where for the

same dynamics, assimilation of a single observa-

tion produced a steady-state analysis error covari-

ance whose largest and smallest eigenvalues

differed by a factor equal to the ratio of the

domain size to the advection speed; here, the ratio

of the domain size to the advection speed is 9.
Fig. 3. Checkerboard plot of the elements of the spatially The clustering of the eigenvalues of P in groups
correlated Qm used in the experiments and grey scale. of four is the result of the spatial homogeneity of

the model and observational errors and of the

advection speed, 4 grid-points/unit time. Alsoing pattern makes A non-normal; the difference
shown in Fig. 4b are the upper and lower estimatesbetween the singular values and magnitudes of the
for the eigenvalues of P obtained from (22). Theeigenvalues is one indication of non-normality.
corresponding results (not shown) for the experi-The singular values of the system matrix control
ment with spatially correlated model error arehow analysis errors are modified by one forecast/
qualitatively similar to the spatially uncorrelatedanalysis cycle in the steady-state regime. Fig. 4a
model error case though the bounds from (22) areshows that there is a 9-dimensional subspace
not tight because l

n
(Q)Hl1 (Q) for the spatiallywhere analysis errors are reduced after a single

correlated case.forecast/analysis cycle; the magnitude of analysis
The magnitude of the eigenvalues and singularerrors outside of this subspace remain unchanged.

The eigenvalues of A are all less than one in values of Y for the non-normal case are shown in

Fig. 4. Singular values and magnitude of the eigenvalues of the steady-state system matrix for normal dynamics
(c∞(x)=0) and observations at the first 9 grid points. Panel (a) shows the singular values (plus signs) and magnitude
of the eigenvalues (crosses) of A for Qm=0.025I. Panel (b) shows the eigenvalues of P (crosses), and upper and lower
bounds from (22) (dotted lines).
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Fig. 5. The singular values of Y are the values of the observations were chosen to lie in the region
where errors are not amplified by the dynamics,the function plotted (dashed line) in Fig. 2, evalu-

ated at the grid points. As was shown analytically, the smallest singular values of A shown in Fig. 6a

are smaller than those in the normal case, shownthough the eigenvalues of the dynamics all have
magnitude one, the presence of singular values in Fig. 4a. Not observing the growing modes of

the dynamics leads to A, like Y, having 13 singulargreater than unity allows transient growth to

occur. To examine the effect of not observing the values greater than unity, indicating that there is
a 13-dimensional subspace associated with transi-growing modes of the dynamics, first only the

trailing 9 left singular vectors of Y were observed. ently growing analysis errors. The asymptotic rate

We take H=[u
n−p+1 , . . . , u

n
]T, where u

m
is the mth at which analysis errors are reduced, as given by

left singular vector of Y and p=9. Fig. 2 shows the eigenvalues of A (crosses in Fig. 6a), is roughly
that this choice of H corresponds to observing to the same as in the normal case (crosses in Fig. 4a).
the left or upstream of the instability. Fig. 6a Fig. 6b shows that not observing growing modes
shows that as in the case with normal dynamics, of the dynamics leads to P having eigenvalues that
the analysis errors are reduced in a 9-dimensional are larger than in the normal case (compare
subspace by a single forecast/analysis cycle. Since Fig. 4b). Similar results (not shown) were found

for the spatially correlated model error case.

Fig. 7a shows that with the same non-normal

dynamics, if the 9 leading left singular vectors of

the dynamics are observed (H=[u
1
, . . . , u

p
]T), the

singular values of A are reduced and most of the
growing modes of A are removed. This H corre-

sponds to observing directly in the middle of the

instability. The result of this change in observing

pattern is a reduction of the analysis error to a
level comparable to that of the normal case (com-

pare Fig. 7b and Fig. 4b). This reduction in size

of the eigenvalues of P is suggested by the inequal-

ity in (27). However, as the relation in (27) is a
lower bound on the eigenvalues of P, reducing the
singular values of the steady-state system matrixFig. 5. Singular values (plus signs) and magnitude of the
does not necessarily reduce the asymptotic analysiseigenvalues (crosses) of Y for the non-normal dynamics

case. error levels. If the analysis error levels were strictly

Fig. 6. As in Fig. 4, but for non-normal dynamics and an observation operator that corresponds to observing the
trailing left singular vectors of the dynamics Y.
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Fig. 7. As in Fig. 6, but when the leading left singular vectors are observed.

controlled by the singular values of the system eigenvectors) of P and B were compared in the
following manner: let W=[w

1
, . . . , w

n
] and Z=matrix, then the optimal observing strategy would

be simply to minimize the singular values of the [z1 , . . . , z
n
] be the n×n matrices whose columns

are the eigenvectors, in order of decreasing eigen-system matrix. We return to this point in Section 5
and Section 6. value, of P and B respectively. Consider the matrix

M defined to be the product M=ZTW. TheWe have shown how the eigenvalues of the
bound matrix B are related to those of the steady- entries of M are M

ij
=zT

i
w
j
. That is, the ith row

of M contains the components of the ith eigenvec-state analysis error covariance P. Now we examine

how the eigenvectors of B project onto those of tor of B written in the basis given by the eigenvec-
tors of P. Gelaro et al. (1998) used a similarP. For the 3 pairs of experiments described, the

invariant subspaces (subspaces spanned by the approach, referring to M as a projection matrix,

Fig. 8. Checkerboard plots representing the projection of the eigenvectors of P onto the eigenvectors of B for the
normal dynamics case. The image on the left is for Qm=0.025I and that on the right for the spatially correlated
model error.
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to compare the subspaces spanned by initial and 5. Damped baroclinic wave model
final singular vectors. If P and B have the same
eigenvectors with the same ordering, then M=I; The next illustration uses the dynamics of a

model of damped baroclinic waves (Farrell, 1989).if only the ordering is different then M is the
identity matrix with some columns permuted. Similar baroclinic models have been studied

extensively in the context of optimal growth andSince W and Z are orthogonal matrices, the entries

of M have absolute value between zero and one. predictability (Farrell, 1985; Farrell and Ioannou,
1993).The structure of M for the three cases considered

is shown in Figs. 8–10. In these ‘‘checkerboard’’

plots of the elements of M, the darkness of the 5.1. Model
ijth square is proportional to the absolute value

Using the same scaling parameters as in Farrell
of M

ij
. The darkest squares indicate vectors that

(1989), the non-dimensionalized potential vorti-
are parallel; white squares indicate vectors that

city equation based on the non-dimensional
are orthogonal. The image on the left is for Qm=

stream function
0.025I and that on the right for the spatially

W (x, y, z, t)=y(z, t) ez/2 eikx cos (ly) (40)correlated Qm. Figs. 8–10 ( left panels) show that
in all the cases when the model error covariance is
is proportional to the identity matrix, P and B
have the same eigenvectors; only the ordering is A ∂∂t+ ikzB Cy

zz
−Aa2+

1

4B yD+ ik(b+1)y=0,
different. Additionally in all the cases the difference

(41)in ordering is not very great. When the spatially
correlated Qm is used, the eigenvectors of P and with boundary conditions
B do not coincide (Figs. 8–10, right panels).

However, some diagonal dominance is still seen ∂
∂t Ay

z
+

y

2B− ik(1−C )y=0, z=0, (42)
in the plots of M, indicating that the leading
invariant subspace of B is still a good approxi- A ∂∂t− ikzB Ay

z
+

y

2B− iky=0, z=zT , (43)mation of that of P; that is, the leading eigenvectors
of P project mostly onto the leading eigenvectors
of B. where a=Ek2+l2 and C is the non-dimen-

Fig. 9. As in Fig. 8, but for non-normal dynamics and with observations of the trailing left singular vectors of
the dynamics.

Tellus 52A (2000), 5



. .   .546

Fig. 10. As in Fig. 9, but with observations of the leading left singular vectors of the dynamics.

sionalized Ekman damping parameter taken here

to be 0.2i, corresponding to a vertical eddy viscos-
ity of 4.5 m2/s; b=0.533 and a unit time interval
is equivalent to 9.3 h. The k= l=2 wave with

meridional wavelength 3100 km is considered. The
upper boundary condition at zT=4.0 corresponds
to a height of 40 km.

Discretizing eq. (41) and the boundary condi-
tions (42) and (43) using centered differences on

a regular grid in the vertical coordinate z gives a
system of equations of the form

∂y
j

∂t
= ∑

n

m=1
F
jm

y
m
, (44)

Fig. 11. Singular values (plus signs) and magnitude of
the eigenvalues (crosses) of Y for the damped baroclinic

where y
j
(t)=y(z

j
, t), z

j
is the jth level, and n is wave model.

the number of levels; details of F
jm

can be found
in Farrell (1989). The matrix Y

t
that advances the

solution by time t is Y
t
=exp (tF). Fig. 11 shows to maximum initial growth was calculated in

Farrell (1989) and has most of its structure concen-the singular values and eigenvalues of Y
t
with the

number of levels n=36, for t=0.6452 correspond- trated near the surface. In the absence of Ekman
damping, the baroclinic wave dynamics has oneing to a time step of 6 h, which is used here. The

qualitative features of the singular values and exponentially increasing and one exponentially
decaying eigenmode in addition to the neutraleigenvalues of the baroclinic dynamics are similar

to those of the generalized advection equation eigenmodes. The vertical dissipation used here is
sufficient to damp the exponentially growing modeshown in Fig. 5, with eigenvalues that have

approximately unit magnitude and several singu- (Farrell, 1989). However, an effect of the relatively

low vertical resolution used here is that the expo-lar values greater than unity, indicating transient,
non-modal growth. The perturbation that leads nential growth rate is quite small but non-zero.
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5.2. Kalman filter experiments formance in the unsteady regime. After the initial
peak, dAkd2

F
decays faster for pattern 1 than for

The steady-state system matrix A and analysis
patterns 2 and 3. The size of the steady-state

error covariance P are calculated as in
analysis error variance depends on the behavior

Subsection 4.3. The observation error is taken to
of the steady-state system matrix on all time-

be uncorrelated, with R=0.1I
p
; the forecast model

scales. In particular, from (18),
error given in (39) is used with L =5 km and the
normalization tr Qm/n=1. To give an indication

tr B= ∑
2

k=0
dAkd2

F
, (45)

of the effect of changing the observing pattern, the
squared Frobenius norm of Ak, dAkd2

F
¬

and therefore the trace of the bound matrix is
tr Ak (AT )k, is plotted as a function of k in Fig. 12

proportional to the area under the graph of
for 3 different observing patterns. This dAkd2

F
plotted as a function of k. Although the

quantity can be interpreted as the expected value
temporal behavior of the steady-state system mat-


 yT
k

y
k
� of the response of the unforced system

rices associated with the three observing patterns
y
k+1=Ay

k
to a spatially uncorrelated random

is different, the areas under the graphs in Fig. 12
initial condition y0 with 
 y0 yT

0
�=I; that is,

are not so different, and thus the steady-state

 yT

k
y
k
�=dAkd2

F
, and initially dA0d2

F
=dId2

F
=

values of the total analysis error variance are
n=36. This unforced, time-independent system,

comparable; for pattern 1, tr P=236.4, for pat-
like the bound matrix, can be used as a tool to

tern 2, tr P=251.7, and for pattern 3, tr P=309.2.
study the steady state of the time-dependent

The remainder of the results shown use observ-
system (6). The three observing patterns are

ing pattern 1. Fig. 13a shows 2 properties of the
(1) observations of y at every fourth vertical level;

steady-state system matrix A that lead to large
(2) observations of the leading 6 right singular

asymptotic analysis error levels: (i) the system
vectors of the dynamics; and (3) observations of

matrix has eigenvalues inside but near the unit
the leading 6 left singular vectors of the dynamics.

circle; and (ii ) it has many singular values greater
Both the leading left and the leading right singular

than unity. Note that the largest singular values
vectors of the dynamics have most of their struc-

of the system matrix are larger than those of the
ture localized near the surface. Fig. 12 shows that

dynamics, another indication of the suboptimality
with observing pattern 1, dAkd2

F
has a large initial

of the asymptotic gain outside of the steady-state
transient in comparison to that of observing pat-

regime; we show later that these growing modes
terns 2 and 3. This behavior is a reminder that

of the system matrix are ‘‘unlikely’’ in the steady
the asymptotic gain K, while optimal in the asymp-

state since they project mostly onto the trailing
totic steady state, can give far from optimal per-

eigenvectors of the steady-state analysis error
covariance. Fig. 13b shows that the steady-state
analysis error covariance has large eigenvalues

with the bounds from (22) predicting well the
shape but not the values of the analysis error
covariance spectrum.

We examine the eigenvectors of the steady-state
analysis error covariance in the same manner used
in Subsection 4.3. Fig. 14 shows checkerboard

plots of the elements of M=Z*W for W taken to
be the eigenvectors of P, and for Z taken to be
(a) the eigenvectors of B, (b) the eigenvectors of

B1 ( left singular vectors of A) and (c) the right
singular vectors of A. Fig. 14a shows that the

leading eigenvectors of the bound matrix B are
nearly the same as those of the asymptotic analysis

Fig. 12. The quantity dAkd2
F

plotted as a function of k
error covariance matrix. Fig. 14b shows that thefor the damped baroclinic wave dynamics and observing
leading invariant subspace of B1 ( leading leftpatterns: pattern 1 (diamonds), pattern 2 (plus sign) and

pattern 3 (asterisks) as described in the text. singular vectors of A) is also a good approxi-
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Fig. 13. Singular values and magnitude of the eigenvalues of the system matrix for dynamics of the damped baroclinic
wave model. Panel (a) shows the singular values (plus signs) and magnitude of the eigenvalues (crosses) of A. Panel (b)
shows the eigenvalues of P (crosses), and upper and lower bounds from (22) (dotted lines).

Fig. 14. Checkerboard plots of the elements of the matrix M=Z*W for Z taken to be (a) the eigenvectors of B,
(b) the eigenvectors of B1 and (c) the right singular vectors of A.

mation for that of the asymptotic analysis error since the leading and trailing eigenvectors of P
are orthogonal by construction.covariance matrix. The dark squares in the lower

left-hand corner of Fig. 14c show that the trailing Similar relations between right and left singular
vectors of dynamics have been noted elsewhere.right singular vectors of the steady-state system

matrix are a good approximation for the leading For the discrete dynamics of Section 4, we saw
that the left and right singular vector correspond-invariant subspace of the asymptotic analysis error

covariance matrix. Additionally, the leading right ing to any given singular value are orthogonal,

being different columns of the identity matrix.singular vectors of the system matrix project
strongly onto the trailing eigenvectors of P (see Gelaro et al. (1998) observed near-orthogonality

of leading right and left singular vectors of theupper right-hand corner of Fig. 14c). The leading
right and left singular vectors of the steady-state dynamics in a more realistic model. An explana-

tion for this similar behavior of the steady-statesystem matrix A are therefore approximately

orthogonal since they approximate the trailing system matrix is that since the system matrix is
stable, its leading left singular vectors must projectand leading eigenvectors, respectively, of P, and
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mostly onto its trailing right singular vectors, analysis error covariance and the non-modal
stability properties of the system matrix. Thewhich are orthogonal to its leading right singular

vectors by construction, so that growth is not eigenvalues of the bound matrix give estimates for

the eigenvalues of the steady-state analysis errormaintained.
We stated earlier that the eigenvectors of B, by covariance matrix, and in some circumstances the

leading eigenvectors of the bound matrix approxi-ordering state space according to accumulated

growth, play a rôle analogous to that of Lyapunov mate those of the steady-state analysis error
covariance matrix. This bound matrix estimatevectors. That analogy is supported by the relations

observed here among the eigenvectors of B, the approach extends naturally to the time-dependent

problem. The eigenvectors of the bound matrix,singular vectors of the steady-state system matrix,
and the eigenvectors of the steady-state analysis identifying the directions in state space associated

with accumulated past growth, play a role similarerror covariance matrix. Szunyogh et al. (1997)

noted that generally leading right singular vectors to that of Lyapunov vectors in deterministic sys-
tems. Methods of computing the leading singularof the dynamics are quite different from leading

Lyapunov vectors, while leading left singular values and vectors of the system matrix might be

adapted to compute the leading eigenvectors ofvectors resemble leading Lyapunov vectors. Also,
Swanson et al. (1998), observing all state variables, an approximate bound matrix. In the simplest

approximation, the leading eigenvectors of theand using perfect-model, 4D-Var data assimila-

tion, found that the dominant analysis errors were bound matrix are approximated by the leading
left singular vectors of the system matrix, and thewell described by the Lyapunov vectors.

leading eigenvalues of the bound matrix depend
on the squares of the singular values of the system
matrix. The singular values and vectors of the6. Summary and conclusions
system matrix are in general different from those
of the dynamics. If growing modes of the dynamics,The properties of a general linear, time-inde-

pendent forecast/analysis system were investi- in particular leading left singular vectors of the

dynamics, are not observed, then the analysis stepgated. The steady-state analysis error covariance
matrix of such a system satisfies a discrete algeb- will not be able to reduce the associated errors in

the first guess. In that case, growing modes of theraic Lyapunov equation (DALE). Using proper-

ties of the DALE we examined why the steady- system matrix are related to those of the dynamics.
Failure to observe the leading left singular vec-state analysis error covariance might have a dom-

inant part and how that dominant part can be tors of the dynamics was seen to lead to a system

matrix with large singular values and elevatedapproximated. Non-normality of the system
matrix is a key feature; the system matrix is the steady-state analysis error variances in a numerical

example using a generalized advection equation.linear operator that combines the forecast and

analysis steps. If the system matrix is normal, the This result has implications for targeted observing
strategies. However, there are several caveats. Theproperties of the DALE and hence of the steady-

state analysis error covariance are trivially related first is the simplicity of the dynamics, in particular,

its time-independence. Second, in this work theto the eigenvalues and eigenvectors of the system
matrix. The role of observation and forecast model focus has been on the analysis error covariance,

whereas investigations of observing strategies aserrors is also important since their presence pre-

vents repeated iterations of the forecast/analysis well as initial ensemble selection typically have
used forecast skill as the measure of optimalitycycle from relaxing to modal behavior. However,

the view taken here has been to assume that the (Gelaro et al., 1998). The choice of whether to

observe the modes that grew ( left singular vectors)impact of the system matrix on the steady-state
analysis error covariance is greater than that of or the modes that will grow (right singular vectors)

depends on whether forecast or analysis accuracythe observation and forecast model error forcing.
This choice is a practical one since the forecast is the optimality criterion. If analysis accuracy is

desired, then observations of the leading left singu-model error is poorly known.

The bound matrix provides a quantitative con- lar vectors of the dynamics are generally more
important than observations of the leading rightnection between the structure of the steady-state
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singular vectors of the dynamics. The reason for ting covariance evolution schemes based on low-
dimensional representation of the dynamics.this conclusion is that if observations of the leading

right singular vectors of the dynamics are used, In summary we find that:

the size of the forecast error that projects onto the
$ non-normality of the forecast/analysis system is

leading left singular vectors of the dynamics
a key factor in determining the properties of

depends on the observation error amplified by the
the steady-state analysis error covariance;

forecast dynamics. The non-normality of the
$ theoretical estimates based on the bound matrix

dynamics implies that the subspaces spanned by
show the dependence of the steady-state analysis

the leading right and left singular vectors may be
error covariance on the dynamics and observing

nearly orthogonal. In that case, with observations
pattern through the system matrix;

of only the leading right singular vectors, the
$ in the simplest approximation, the dominant

analysis is unable to reduce the first guess error
eigenvectors of the bound matrix are approxi-

that projects onto the leading left singular vectors
mated by the left singular vectors of the system

of the dynamics. On the other hand, if observations
matrix; when growing modes of the dynamics

of the left singular vectors are used, the first guess
are not observed, they are related to the left

error projecting onto the leading left singular
singular vectors of the dynamics.

vectors of the dynamics is reduced by the observa-
tions, and the size of the resulting analysis error This last point seems to have implications in

the context of approximating error covariancesdepends on the observation error unamplified by
the forecast dynamics. Of course, applying the via ensemble methods (Evensen, 1994;

Houtekamer et al., 1996), at least for linear sys-same arguments to the steady-state forecast error
covariance leads to the conclusion that observa- tems. The accuracy of an ensemble method

depends on capturing growing modes of the systemtions of the leading right singular vectors of the

dynamics reduce singular values of the forecast and on representing the analysis uncertainty well.
The work here suggests that it may not always beerror propagation system matrix and consequently

forecast error. possible to satisfy these criteria simultaneously.

Choosing perturbations that correspond to lead-Since the dependence of the steady-state analysis
error covariance on the singular values of the ing right singular vectors, while capturing the

growing modes, would not necessarily result in ansystem matrix presented in this work is in the

form of a lower bound, increasing the singular ensemble whose sample covariance approximates
well the analysis error covariance. In fact, in thevalues of the system matrix guarantees that the

steady-state analysis error variance will be model for damped baroclinic waves, the leading

eigenvectors of the steady-state analysis errorincreased, but reducing them does not guarantee
reduction of the variance. That is to say, observing covariance projected strongly onto the trailing

right singular vectors of the system matrix.the leading left singular vectors of the dynamics

may not be the optimal strategy since the steady- Conversely, the sample forecast error covariance
resulting from a small initial ensemble thatstate analysis error covariance does not depend

on a single application of the system matrix. More approximates well the analysis uncertainty may

not explain well forecast errors due to growinggenerally, the dependence of the bound matrix on
the system matrix should be used to examine the modes. Possible solutions are to project analysis

errors on to the growing modes or to calculaterole of the observing pattern in determining

steady-state analysis error levels. It must be the growing modes weighted by the analysis error
(Barkmeijer et al., 1998; Swanson et al., 1998).remembered that the observing pattern also plays

a role in the system error covariance matrix, which

includes terms for both the model and the observa-
tion error covariances. Failure to observe the 7. Acknowledgements
leading eigenvectors of the model error covariance
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other words,8. Appendix
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k
B
k
, (54)

Define P
k
¬
 y

k
yT
k
� where y

k
is defined by (6),

with the relation in (21) following as a special case.
and suppose that (6) is in steady state: A

k
=A

If there is some information available about the
and Q

k
=Q. Then

system error covariance, it can be used in the
P
k
=
(Ay

k−1+b
k
)(Ay

k−1+b
k
)T� definition of the bound matrix. Suppose we have

a time-dependent model Q̃
k

for the system error=A
 y
k−1 yT

k−1�AT+Q+A
 y
k−1bT

k
�

covariance Q
k
and time-independent constants c−

+
b
k
yT
k−1�AT. (46) and c+ such that c−Q̃

k
∏Q

k
∏c+Q̃

k
. Then defin-

ing a bound matrix B̃
k

by
But 
 y

k−1bT
k
�=0 since

B̃
k
=A

k
B̃
k−1AT

k
=Q̃

k
, (55)

y
k−1=Ak−1y

0
+ ∑

k−1
j=1

Ak−j−1b
j
, (47)

it follows that


 y
0
bT
k
�=0, and 
b

j
bT
k
�=0 for j≠k. Therefore, c−B̃

k
∏P

k
∏c+B̃

k
. (56)

P
k
=AP

k−1AT+Q, or
If the system error covariance Q

k
is known at

least approximately, Monte Carlo methods can beP
k
=AkP0 (AT)k+ ∑

k−1
j=0

AjQ(AT )j. (48)
used to calculate P

k
by approximating the expecta-

tion with an ensemble average (Evensen, 1994).
Since the eigenvalues of A lie inside the unit circle,

Such an approach is similar to that of system
the first term in (48) tends to zero, and the terms

simulation (Houtekamer et al., 1996) where an
of the series in (48) decay geometrically and the

attempt is made to account for all sources of error;
series converges uniformly (Golub and Van Loan,

it is also conceptually similar to the ‘‘breeding of
1996, Lemma 7.3.2). Therefore, the limit

growing modes’’ (BGM) method (Toth and
P= lim

k�2
P
k

(49) Kalnay, 1993). In the BGM method the factor

(I−K
k
H
k
) appearing in the system matrix is

exists and is the solution of P=APAT+Q. approximated by a constant or by a ‘‘regional
The bound matrix approach can be extended rescaling’’ factor, and there is no explicit stoch-

to the time-dependent case as follows. Again astic forcing.
define P

k
¬
 y

k
yT
k
� where y

k
is defined by (6). In the steady-state problem, the dependence of

Then using the arguments above, the properties of B on the non-normality of the

system matrix highlights the role played by non-P
k
=A

k
P
k−1AT

k
+Q

k
, (50)

normality in stochastically forced systems. If the
and we can define a time-dependent bound matrix forcing term is not included, the iteration in (6)
B
k

by the iteration with A
k
=A is the power method without renor-

malization (Golub and Van Loan, 1996,B
k
=A

k
B
k−1AT

k
+I, (51)

Subsection 7.3.1). For this reason, it has been
with B0=I. Subtracting (50) from (51) multiplied

stated that for linear, stationary dynamics the
by a scalar c

k
gives

BGM method is similar to the power method and
(c
k
B
k
−P

k
)=A

k
(c
k
B
k−1−P

k−1 )AT
k
+ (c

k
I−Q

k
). that in this case, the leading BGM vector is the

leading eigenvector of the dynamics (Buizza and(52)
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Palmer, 1995). If the system matrix A is normal, method for computing Lyapunov vectors (Legras
and Vautard, 1996, Section 5) reduces to orthog-this conclusion is correct even in the presence of

stochastic forcing, since in that case, the leading gonal iteration, a standard method for calculating

the subspace spanned by the leading eigenvectorseigenvector of B is identical to the leading eigen-
vector of A. However, when the system matrix is (Golub and Van Loan, 1996, Section 7.3.2); the

Lyapunov vectors themselves are not eigenvectorsnon-normal, the eigenvectors of the bound matrix

B are in general not eigenvectors of A. Another but an orthogonal basis for the invariant sub-
spaces of A (for an alternative Lyapunov vectorreason not to interpret BGM as the power method

is that the power method may be excessively slow definition see Trevisan and Pancotti, 1998).

However, conceptually the eigenvectors of B doto converge for non-normal matrices (Golub and
Van Loan, 1996, Lemma 7.3.1.). play the rôle of Lyapunov vectors of the system

with spatially uncorrelated, homogeneous randomThe eigenvectors of the bound matrix B do not

correspond to Lyapunov vectors of the unforced forcing, since they order the directions of state
space according to accumulated growth.system. For time-independent dynamics the
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