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1. Introduction

Food and livelihood security in Sahelian West Africa are
highly sensitive to precipitation. As is the case for most
Sahelian countries, about 90% of the population of Burkina
Faso depends on rainfed subsistence cereal production
(Ingram et al., 2002). Some cash crops, such as cotton,

peanut and sesame, are also grown under rainfed
conditions. Small dams that support irrigated rice and
vegetable production during the dry season also depend on
rainfall. Extensive livestock systems, which depend on the
same dams and reservoirs, are an important source of
income particularly in the drier northern areas of Burkina
Faso.
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a b s t r a c t

The high variability of rainfall, from interannual to multi-decadal time scales, has serious

impacts on food security in the West African Sahel. At five locations in Burkina Faso, we

explore the potential to improve model-based prediction of sorghum yields at a range of

lead-times by incorporating seasonal rainfall forecasts. Analyses considered empirical and

dynamic rainfall forecasts, two methods (regression and stochastic disaggregation) for

linking rainfall forecasts with crop simulation, three levels of production technology and

four forecast dates (15 May, June, July and August) based on predictors observed from the

preceding month, for the period of available data (1957–1998). Accuracy of yield forecasts

generally decreasedwith lead-time. Relative to forecasts based solely onmonitoredweather

and historic climatology, incorporating rainfall forecasts resulted in modest improvements

to yield forecastsmade inMay or June. The benefit from seasonal rainfall forecasts tended to

increase with northern latitude. Statistical and dynamic rainfall forecast systems captured

much of the multi-decadal variation apparent in historic rainfall and in yields simulated

with observed rainfall. This multi-decadal component of rainfall variability accounts for a

portion of the apparent predictability of sorghum yields. Correlation between point-scale

crop yield simulations and district-scale production statistics (1984–1998) was weakly

positive late in the season, and suggest that a dynamic crop model (SARRA-H) has potential

to contribute to regional yield prediction beyondwhat the best linear regression can provide

from seasonal rainfall or its predictors. We discuss avenues for further improving crop yield

forecasts during the growing season.
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Sorghum is Africa’s second most important cereal crop
after maize, but the most important cereal in the Guinea
savannah (800–1100 mm rainfall) and Sudan savannah (600–
800 mm rainfall) regions of West Africa. From a food security

standpoint, sorghum is by far the most important crop in
Burkina Faso, accounting for 44% of the country’s cereal
production (1997–2006 mean, data from FAOSTAT) and 28% of
caloric food intake (2001–2003 mean, FAO, 2006). Sorghum
yields have been stagnant across West Africa since the late
1970s (FAO, 1997), but have shown a positive trend in Burkina
Faso. Although breeding has increased yield potential of
available cultivars, production continues to be dominated by
traditional cultivars characterized by strong photoperiod
sensitivity, drought tolerance, long stalks, high-quality grain
and low harvest index. These traditional cultivars are well

adapted to the rainfall variability that characterizes the dryer
regions of West Africa (Dingkuhn et al., 2006; Kouressy et al.,
2008). Their extreme photoperiod sensitivity gives farmers the
flexibility to adjust planting dates to take advantage of early
rains while still getting a modest crop when rains are delayed,
with little variation in time of flowering and maturity
(Dingkuhn et al., 2008). Farmers in the Sahel and Sudan
savannah plant as early as possible to take advantage of the
flush of available nitrogen associatedwith early rains (Blondel,
1971a,b,c) and avoid weed pressure (Stoop et al., 1981;
Vaksmann et al., 1996), even though such early planting

increases risk of failed establishment and re-sowing (Sultan
et al., 2005). Planting dates in Burkina Faso typically range
from May to early July, and tend to be later in more northern
latitudes. Harvest maturity ranges from September to
November, depending on latitude.

The West African Sahel region experienced catastrophic
droughts during the early 1970s and 1980s that had tremen-
dous consequences for its population and ecosystems. This
led to the establishment of CILSS (French acronym for
Permanent Interstate Committee for Drought Control in the
Sahel) and the AGRHYMET Regional Center (www.agrhy-
met.ne), Niamey, Niger. Since 1974, AGRHYMET has been

responsible for crop and pasture monitoring as part of an
integrated early warning system for the nine member
countries (Burkina Faso, Chad, Cape Verde, The Gambia,
Guinea Bissau, Mali, Mauritania, Niger and Senegal) of CILSS.

A tendency toward aridification in the West African Sahel
during the 1970s and 1980s has raised concern about the
region’s long-term ability to meet its food needs, and
complicated the challenge of anticipating and responding to
drought-related food crises. Jensen (1990) noted a long-term
(45–78 years, depending on record length) negative trend
averaging 10 mm year!1 (1960–1983) in rainfall records in

northern Nigeria, shortening of growing seasons and south-
ward movement of agroecological zones. Subsequent studies
showed the same pattern throughout the Sahel (Sivakumar,
1993; Hulme and Jones, 1994; Fontaine and Janicot, 1996;
L’Hôte and Mahé, 1996; Diouf et al., 2000; Traoré et al., 2000).
Nicholson et al. (2000) found that a substantial decrease in
1968–1997 mean rainfall, relative to the 1931–1960 mean, was
particularly noticeable for August, when the decrease inmean
rainfall amountswere 55%, 37% and 26% in the Sahelo-Sahara,
Sahel and Sudan zones, respectively. Lebel and Lebarbé (1997)
found that the decrease of the rainfall amount in the core of

the rainy season (July–August) was related to the number of
rain events, while mean intensity of rainfall events remained
unchanged. Most annual crops in the region are particularly
sensitive to dry spells in August, when they undergo the

processes of stem elongation, panicle differentiation and seed
set.

The downward trend in Sahelian rainfall since the early
1960s must be considered in the context of dramatic multi-
decadal fluctuations that have occurred repeatedly over longer
timescales (e.g., Brooks, 2004), reflecting the fragile nature on
the Sahelian climate located in a zone of tight precipitation
and vegetation gradients. Several authors have noted that a
number of relatively wet years have been observed since the
1980s, leading to average conditions that have been less severe
in the last 15 years than in the previous two decades

(Nicholson, 2005; Anyamba and Tucker, 2005; Olsson et al.,
2005), yet mean precipitation is still far below the levels of
1950–1970. It is generally considered too early to assess
whether the recent 15–20 years represents a temporary respite
or the start of a major shift toward wetter conditions. There is
also not yet a consensus about how anthropogenic global
warmingwill affect rainfall in the region. Recognition of strong
multi-decadal variations in theWest Africanmonsoon system
and the increasing uncertainty associated with climate
change call for food security early warning and response
systems that are effective and robust in the face of climate

variations at interannual and longer time scales.
Crop monitoring activities of AGRHYMET begin with the

assessment of the start of the season, and continue through-
out the seasonwith the analysis of the cropwater requirement
satisfaction, available soil moisture, crop pests and diseases,
and yields forecasts. The current yield forecasting system
(described in Traoré et al., 2006) uses 10-daily observed rainfall
data or rainfall estimates from METEOSAT infrared imagery,
with a simple water balance simulation model, DHC (Samba,
1998). A water satisfaction index – the seasonally integrated
ratio of actual to potential evapotranspiration – is used to
estimate cereal yields statistically, based on surveys in six

West African countries (Girard et al., 1994; Samba, 1998;
Dingkuhn et al., 2003). Yields are first estimated at the end of
August and updated at the end of September. Comparison
with the average expected yield indicates whether a region is
at risk of food insecurity. The skill of the current methodology
is considered acceptable to disseminate to food security
stakeholders only starting the end of August.

Any delay in identifying and initiating response to
emerging food crises greatly increases the humanitarian
and livelihood impacts and the cost of aid (Haile, 2005), as
World Food Program data from the 2004–2005 Niger food crisis

demonstrates for the West African case (Barrett et al., 2007).
Increasing the lead-time of probabilistic staple crop produc-
tion estimates would therefore potentially enable action to
protect rural populations to be taken earlier.

The ability to predict rainfall at a seasonal lead-time raises
the prospect of increasing accuracy (at a given lead-time) and
lead-time (at a given accuracy) of crop production forecasts.
The potential improvement from incorporating seasonal
forecasts is expected to be greatest early in the growing
season. Evidence of teleconnections between rainfall in the
West African Sahel and temperatures of the oceans has been
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established both at the near-global scale (Folland et al., 1986),
and particularly for the tropical Atlantic (Lamb, 1978;
Hastenrath, 1990) and the El Niño/Southern Oscillation (ENSO)
in the equatorial PacificOcean (Janicot et al., 1996;Ward, 1998).

These teleconnections influence rainfall at both interannual
and multi-decadal timescales (Ward, 1998; Giannini et al.,
2003), and provide a basis for forecasting precipitation at a
seasonal lead-time, either through direct statistical relation-
ships or dynamic general circulation models (GCMs). Several
promising methods are available (reviewed in Hansen et al.,
2006) for incorporating seasonal climate forecasts into crop
simulation to predict yields.

This paper presents a study of the predictability of sorghum
yields, using a dynamic crop simulation model driven by a
combination of monitored rainfall and seasonal rainfall

forecasts, at five locations in Burkina Faso. Our objective is
to enhance the accuracy and lead-time of staple crop
production forecasts that are produced operationally to
inform food security interventions. Current crop production
forecasts are based on monitored weather (through the
forecast date) and historic climatology (for the remainder of
the growing season). We consider the influence of lead-time,
production system, seasonal forecast system and method on
predictability, emphasizing the climate component of uncer-
tainty rather than crop model error (Hansen et al., 2006). We
then address the influence ofmulti-decadal fluctuations of the

West Africamonsoon system on crop yield prediction. Finally,
we compare simulated and forecast yields with historic yield
records from the corresponding crop reporting districts
(corresponding to administrative regions). The use of seasonal
forecasts for crop yield forecasting is one of several compo-
nents of ongoing research work by AGRHYMET and partner
institutions aimed at improving food crop monitoring and
early warning in West Africa.

2. Methods

2.1. Data

The study used 42 years (1957–1998) of daily weather data
(rainfall, minimum and maximum temperature, relative
humidity, solar irradiance and wind velocity) from five
stations selected to represent the north–south rainfall
gradient across Burkina Faso (Table 1, Fig. 1). A complete set
of daily rainfall observations for the full period were available
from all the stations from the National Meteorology Depart-
ment (Direction de la Météorologie Nationale) of Burkina Faso.
Measured temperatures, relative humidity, solar irradiance

and wind velocity were available from the National Meteor-
ology Department through 1980, and were collected from the
NOAA NCDC Daily Global Historical Climatology Network
(GHCN) for the remainder of the study period. Satellite

estimates of daily solar irradiance for 1985–1998 are from
the Solar radiation Data website (SoDa, http://www.soda-
is.com/eng/services/meteo_eng.html). Daily average relative
humidity was estimated from minimum, maximum and
dewpoint temperatures using the FAO56 method (Allen
et al., 1998).

Temperature, relative humidity and wind velocity records
were complete for 1950–1980, and roughly 85–95% complete
for 1981–1998. There was a gap between National Meteorology
Department records and SoDa estimates of solar irradiance
from 1981 to 1984. Missing weather data were estimated using

a modified stochastic weather generator (Hansen and Mavro-
matis, 2001) that maintains dependence on the occurrence of
precipitation and controls auto-correlation, cross-correlation
with available observations as it samples missing records
stochastically. Tomeet the data requirements of the SARRA-H
crop model, we extended the stochastic weather generator to
include mean daily wind speed and dewpoint temperature
(used to estimate relative humidity). Following the approach
of Parlange and Katz (2000), we sample dewpoint temperature,
and a square root transformation of wind speed, from a
multivariate lag-1 auto-correlated normal distribution condi-

tioned on the occurrence of precipitation. Fixed simultaneous
and lag-1 cross-correlation matrices are based on data for
Eugene, Oregon, USA, reported in Parlange and Katz (2000).

2.2. Seasonal rainfall prediction

We considered two seasonal forecast methods (Table 2):
statistical prediction from a set of sea surface temperature
(SST) indices, and statistical downscaling from wind fields
from a GCM forced with predicted SST boundary conditions.
We evaluated both forecast methods for the main July–
September monsoon rainfall season, for forecast dates on 15

May, 15 June and 15 July, and August–September rainfall for a
15 August forecast date. Each forecast used SST observations
from the precedingmonth. Based on processing time at the IRI
and other operational climate forecasting centers, we
assumed that 15 days is sufficient to incorporate observations
into SST forecasts, run the GCM, process its output, and run
the crop models in an operational crop forecasting system.

The statistical prediction method applied multiple linear
regression to four SST indices: an index representing ENSO in
the tropical Pacific (108N–108Sand1508W–908W), an index in the
northwestern subtropicalAtlantic (208N–408Nand308W–108W),

Table 1 – Stations used in the study

Station Longitude (8E) Latitude (8N) Elevation (m) Annual rainfalla (mm)

Dori 0.1 14.0 277 491
Ouahigouya !2.4 13.6 329 624
Ouagadougou !1.5 12.4 306 735
Fada N’gourma 0.4 12.1 292 866
Bobo-Dioulasso !4.3 11.2 432 1049

a Mean of 1957–1998.
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an index in the equatorial southeastern Atlantic (08S–108S and
208W–108E), and a more global index primarily describing the

contrast between SST anomalies in the northern and southern
hemispheres, as represented by the third principal component
(PC) of global SSTs. These indices, which build on the known
teleconnection relationships, have been used for operational
seasonal forecasts of rainfall by national meteorological
services at the West Africa regional climate outlook forums
(PRESAO) since 1998 (CLIPS, 1998).

The GCM used in this study was ECHAM v. 4.5 (Roeckner
et al., 1996), developed at the Max-Plank Institute. It was run
at a T42 (approximately 2.88, or 280 km at the equator)
horizontal resolution, with 18 vertical levels. Hindcasts were
based on the mean of an ensemble of 24 GCM integrations (Li

and Goddard, 2005), each run with different initial atmo-
spheric conditions but the same SST boundary conditions
predicted over the tropical oceans (308N–308S) using con-
structed analogs (van den Dool, 1994). Over the extra-tropical
oceans, the damped persistence of the preceding month’s
observed SST anomalies were added to the climatological
annual cycle of SSTs from each starting month through the
following 6 months.

To downscale from theGCM to the study locations,we used
the first principal component (PC1) of GCM output fields of

low-level (925 hPa) zonal winds across the tropical Atlantic
and West Africa (608W–108E, 408S–308N), based on the work of
Ndiaye et al. (2001, submitted for publication). Ndiaye et al.
found that ECHAM driven with observed SSTs simulated an
index of Sahelian rainfall (1968–2002) poorly (cross-validated
r = 0.07), but that prediction from PC1 of GCM zonal wind fields
over this region improved skill dramatically (cross-validated
r = 0.56). The choice of GCM wind field as the predictor for
statistical downscaling was guided by the knowledge that in
West Africa, the low-level wind is one of the major features of
the rainfall dynamics, carryingmoisture from the ocean in the
monsoon flow to constitute precipitable water over land.

ECHAM simulates low-level circulation over the tropical
Atlantic in response to SST forcing particularly well. Simula-
tion of rainfall in the Sahel is known to be problematic in
GCMs, with many challenges such as the representation of
convection at the coarse spatial scale of the GCM. The use of
the GCM’swind field as a statistical predictor is a compromise,
which nonetheless maintains the potential advantage of the
GCM to respond physically to the full detail of the prevailing

Fig. 1 – Stations and crop reporting districts in Burkina Faso used in this study. Rainfall isohyets are interpolated from 1971
to 2000 mean annual precipitation from the University of East Anglia, Climate Research Unit TS2.1 gridded precipitation
data set (courtesy of Michael Bell).

Table 2 – Sorghum yield prediction scenarios

Scenario Climate input Method

Baselinea Observed weather Direct input
Climatologyb Sampled weather Simple average
SST-regression Seasonal hindcasts from SST indices Multiple linear regression
SST-disaggregation Monthly hindcasts from SST indices Stochastic disaggregation
GCM-regression Seasonal hindcasts from GCM fields PC regression
GCM-disaggregation Monthly hindcasts from GCM fields Stochastic disaggregation

a Yields under the Baseline scenario are simulated with weather observed throughout the season.
b Predicted yield under the Climatology scenario is the mean of yields simulated with antecedent weather observed for the current year, and
weather from all other years from the forecast date through end of season.
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SST pattern in each year. In contrast, statistical climate
forecast models are constrained to the predictability that can
be extracted from the relatively short historical period of data.
On the other hand, because statistical forecast methods can

often simplify relationships very effectively and prove to be
very robust, it is generally held that information from the two
approaches should be considered complimentary.

We consistently applied leave-one-out cross-validation to
statistical forecasting from SSTs and to the statistical
transformation of GCM wind fields to reduce the danger of
artificial skill by ensuring that observations from the forecast
period did not directly influence forecasts (Michaelsen, 1987).

2.3. Crop model description

SARRA-H (Dingkuhn et al., 2003; Sultan et al., 2005; Baron et al.,
2005) is a simple, deterministic simulationmodel for cereals. It
was developed from SARRA, a dynamic soil water balance
model developed for zoning and risk analysis (Affholder, 1997;
Baron et al., 1999) and for sorghumandmillet yield forecasting
(Samba, 1998). SARRA-H simulates yield attainable under
water-limited conditions by simulating the soil water balance,
potential and actual evapotranspiration, phenology, potential
and water-limited C assimilation, and biomass partitioning.
The model requires latitude, daily weather data (minimum
and maximum temperature, potential evapotranspiration,

rainfall and solar radiation), soil depth and soil water holding
capacity, mulches if any, and sowing density and depth as
inputs.

The daily water balance component simulates runoff using
an empirical rain event threshold of 20 mm (Baron et al., 1996),
soil evaporation, storage, deep drainage, and extraction by
transpiration and soil surface evaporation. To represent a
typical sandy Alfisol for the West African Sahel, we set
available water holding capacity (between wilting point and
field capacity) to 100 mmm!1, and maximum root depth to
1.8 m. The fraction of ground cover, based on simulated LAI
and a Beer–Lamberts extinction coefficient of 0.49, is used to

partition evaporative demand between the soil and plant.
Water-limited transpiration is calculated from relative soil
water content, scaled between wilting point and field capacity
(Sinclair and Ludlow, 1986), and a genotype-dependent
depletion factor set to 0.55 for sorghum, following FAO
guidelines (Allen et al., 1998). Maximum evapotranspiration,
achieved at full ground cover, is calculated with a crop
coefficient set to 1.15, following FAO guidelines (Doorenbos
and Pruitt, 1977; Doorenbos and Kassam, 1979).

Potential C assimilation rate is obtained by multiplying
intercepted photosynthetically active radiation, with an

empirical conversion efficiency coefficient that is analogous
to radiation use efficiency (Sinclair and Muchow, 1999) but
based on assimilation before subtracting respiration losses.
Water-limited assimilation rate is then obtained by multi-
plying by the ratio of water-limited to potential transpiration.
After subtracting maintenance respiration (Penning de Vries
et al., 1989), biomass during vegetative growth is partitioned
among root, stem and leaves (Samba et al., 2001). Leaf biomass
is converted to area from dynamically simulated specific leaf
area (Penning de Vries et al., 1989). To capture the influence of
environment on harvest index, grain filling is simulated by

determining sink capacity during pre-floral stages and indu-
cing leaf senescence after flowering when sink capacity
exceeds current assimilation rate.

Phenology is driven by temperature for all stages and by

day length during the photoperiod-sensitive phase (Dingkuhn
et al., 2008). Relative development rate follows a trapezoidal
function of temperature, with no development below 11 8C
(Lafarge et al., 2002; Clerget et al., 2004) or above 44 8C (Ritchie
and Alagarswamy, 1989), and maximum development rate in
the optimal range of 26–34 8C. Daily observed minimum and
maximum temperatures are interpolated to hourly values for
the calculation of thermal time (Dingkuhn et al., 1995).

2.4. Crop production scenarios

We calibrated SARRA-H v. 3.1.4 for three levels of sorghum
production technology (denoted here ‘‘Traditional,’’
‘‘Improved’’ and ‘‘Hybrid’’) with associated varieties, based
on experimental field data described by Kouressy et al. (2007)
and parameterization procedures described byDingkuhn et al.
(2008). The field data originated from experiments conducted
in 2004–2005 at the Sotuba agricultural research station of the
Institut de l’Economie Rurale (IER) near Bamako in Mali
(128390N and 058560W).

Traditional technology is based on a tall, traditional, highly
photoperiod-sensitive Guinea landrace collected in southern

Mali, with a grain yield potential of about 2.0 Mg ha!1. Its local
name is Kendé Ngou, its international password is SGO5015 IRD
and its code in the ICRISAT germplasm collection for sorghum
is IS 25975.

Improved technology is based on a dwarf breeding line
sharing 75% of the Traditional cultivar’s genome as well as its
photoperiod sensitivity (Kouressy et al., 2007). Despite
virtually unaltered phenology, it produces less biomass but
more grain (up to 3.5 Mg ha!1) than the Traditional cultivar. It
is thus an Improved cultivar that fits into traditional cropping
calendars, generally based on sowing early in the season. Both
Traditional and Improved cultivars enable flexible cropping

calendars because their photoperiodic response triggers
flowering at roughly the optimal time (end of the rainy
season) regardless of sowing date.

Hybrid technology is based on a dwarf, early-maturing,
photoperiod-insensitive, high-yielding (5.0 Mg ha!1), Cauda-

tum hybrid developed by the International Crop Research
Institute for the Semi-Arid Tropics (ICRISAT), coded
ICSH89002. The hybrid must be sown at a specific date in
order to synchronize flowering with the end of the wet season
(to avoid drought, pest and disease problems during grain
filling) and requires fertilizer inputs. It is thus a ‘‘modern’’

technology so far adopted only by a minority of farmers.
Since farmers generally use crop varieties whose phenol-

ogy is specifically adapted to the local latitude and seasonal
rainfall patterns, we adjusted the model’s phenological
parameters for each of the three varieties to give optimal
agronomic fit for the Ouagadougou site, while maintaining
their inherent level of photoperiod sensitivity (phenological
response to sowing date and latitude). Among the five
reference sites, the latitude of Ouagadougou is intermediate
in terms of latitude and rainfall. This choice was considered
an appropriate compromise between the objective of
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transparency (using the samemodel for the entire study) and
site specificity of the simulated agronomic technology
(genotypic parameters of crop variety).

To approximate the behavior of farmers in the West

African Sahel, who generally sow only after a major rainfall
event wets the soil, simulated germination was triggered the
first time after planting when at least 15 mm water was
available in the top (wetted) soil layer. Although simulated
sowing dates were fixed at 15 May for the Traditional and
Improved technologies, and 22 June for the Hybrid, triggering
germination based on soil moisture captures the effect of
farmers’ typical sowing rules. The initial soil water profile was
simulated by running the model’s soil water balance for each
year and location from 1 April until the sowing date, starting
off with a dry soil profile. Simulated germination dates ranged

from late May to late July. Harvest maturity was generally
reached in October to early November.

2.5. Yield prediction

We evaluated two methods for incorporating seasonal pre-
cipitation forecasts into simulation of sorghum yields in
Burkina Faso (Table 2): stochastic disaggregation of predicted
monthly precipitation, and statistical prediction of simulated
yields as a function of seasonal predictors.

The statistical approach assumes that robust predictors of

local seasonal rainfall are potential predictors of crop
response. In this case, the predictand used to train a linear
regression model was yields simulated with observed
weather. For each hindcast year i, SARRA-H simulated yield
yij with observed daily weather up to the forecast date, then
with every year j of historic weather (1950–1998) for the
remainder of the growing season. Predicted yield for year iwas
then estimated by a linear regression model, fit by ordinary
least squares to the simulated yields yij and corresponding
seasonal rainfall predictors (GCM wind field PCs or SST
indices) from each year j 6¼ i as outlined in Hansen et al. (2004).

Stochastic disaggregation involves using a stochastic

weather generator to generate synthetic daily rainfall that
exactly matches predicted monthly totals. The method
(Hansen and Ines, 2005) maintains consistency between the
parameterized precipitation occurrence and intensity compo-
nents of the parameterized weather generator by repeatedly
generating a month of stochastic rainfall until the total is
sufficiently close (i.e., within 5%) of the target, then using a
multiplicative shift to exactly match the target. It used the
same extended stochastic weather model described earlier
(Section 2.1) for filling gaps in observed weather records. For
each year, SARRA-H ranwith observed daily weather up to the

forecast date, then with ten realizations of synthetic weather
from the stochastic model for the remainder of the growing
season. We repeated the process for each of the four forecast
dates.

We also estimated district-scale yield as a cross-validated
linear regression function of seasonal rainfall and its
predictors, to serve as a benchmark for assessing the ability
of model-based yield simulations and predictions to represent
historic production statistics. To approximate the model-
based forecast system, we used observed rainfall total from
June through the end of the month prior to the forecast date,

and SST indices from the month prior to the forecast as
regression predictors.

2.6. Analyses

Analyses of predictability were based on 1957–1998 simula-
tions, and used yields simulated with observed daily weather
as a proxy for actual yields. They therefore represent only the
climatic component of uncertainty, and not crop model error.
We also compared crop simulations model-based yield
predictions with historic yield statistics in the reporting
districts containing the five study stations (Fig. 1), through
the 1984–1998 period when available weather data and crop
statistics overlap. We considered results for individual
stations, and simple averages across all five stations. We

applied a spectral smoothing filter (Press et al., 1989) with a 15-
year smoothing period to separate the multi-decadal and the
interannual components of variability, and compared good-
ness-of-fit measures for the raw results with residuals about
the smoothed trend to estimate the influence ofmulti-decadal
variations on predictability of rainfall and yields.

Pearson’s coefficient of linear correlation between obser-
vations and cross-validated predictions served as a descriptive
pair-wise measure of goodness of fit. We also evaluated mean
bias error (results not shown), and found that it contributed
only a small proportion of the overall prediction error when

comparing yield predictions to simulations with observed
weather. Consistent use of leave-one-out cross-validation
minimized the potential for artificial prediction skill (Efron
and Gong, 1983; Michaelsen, 1987).

3. Results and discussion

3.1. Rainfall prediction

We present a summary of predictability of July–September
rainfall – the main monsoon period when there is established

predictability – at the five study locations primarily to inform
interpretation of yield prediction results. This study uses
seasonal rainfall prediction methods that are published
elsewhere, and focuses instead on prediction of sorghum
yields.

When averaged across stations, empirical forecasts based
on SST indices performed moderately better than forecasts
fromGCMwind fields, especially for the longest-lead forecasts
(available in May from predictors observed in April (Table 3).
Statistical prediction methods can be more robust than GCM
response to the substantial error of projections of SST forward

through the rainfall season, as Ward et al. (1993) found for the
Sahel based on a smaller set of experiments. Predictability of
averages across stations was roughly the same for frequency
(i.e., number of days with #1 mm rainfall) as for the seasonal
rainfall total. However, for individual stations, correlations
tended to be higher for rainfall frequency than for seasonal
totals. Mean intensity showed no predictability from the GCM,
and only weak predictability from SST indices. This indicates
that the predictability of seasonal rainfall total is due more to
the predictability of the number of rainy days than to the
intensity of daily rainfall. For Senegal, Moron et al. (2006, 2007)
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also observed that frequency of rainfall is predictable, but that
mean intensity is not, and attributed the difference in
predictability to the moderate spatial coherence of rainfall
occurrence and absence of correlation of intensities between
stations.

Predictability tends to weaken substantially with increas-
ing lead-time (Table 3). The difficulty of predicting Sahelian
rainfall at a long lead-time is widely recognized, and is
attributed to the relatively rapid changes in the key SST
anomalies for Sahel rainfall: in the eastern and central tropical
Pacific associated with the transition of ENSO states typically

between March and June, and changes in the tropical Atlantic
during this period. Ward et al. (1993) observed a substantial
drop in GCMprediction skill when using SST projects based on
May vs. June SST observations. Ndiaye et al. (submitted for
publication) found that cross-validated correlations between
an observed Sahelian rainfall index and predictions based on
ECHAM wind fields dropped from 0.56 with constructed
analogs based on June SSTs, to 0.35 and 0.30 with constructed
analogs based on May and April SSTs observations, respec-
tively. The GCM pattern of predictability for the Burkina
stations also showsmuch better skill from June SST compared

to April SST. For the empirical prediction models, the change
in skill as a function of lead-time is less substantial. Indeed,
predictions fromApril SST are slightlymore skillful than those
from May SST, though the difference is likely attributable to
sampling.

The GCM-based forecast system used in this study should
be taken as illustrative but not definitive of the potential
performance of GCM-based seasonal forecasts for the Sahel.
There are options that may provide modest increases in the
skill of seasonal rainfall forecasts. The constructed analog
method used in our study is likely not the best method to

forecast SSTs, particularly for the tropical Pacific. Improved
SST forecasts would benefit both GCM-based and statistical
seasonal rainfall forecasts. Furthermore, while we used a
single GCM, the best predictive information often results from
combining more than one GCM (Robertson et al., 2004;
Hagedorn et al., 2005; Doblas-Reyes et al., 2006). Operational
forecasts already routinely employ these enhancements. Yet
combiningmultiple GCMs has not shown large improvements
in skill for this region, and is not likely to lead to major
improvements in the near future, at least with the current
suite of GCMs available to the international community. On

the other hand, the fact that the SST indices and GCM wind
fields both provide substantial prediction skill suggests that it
may make sense to consult predictions from both approaches
whenproducing operational forecasts. Although the statistical
SST-based forecasts are normally more skillful, the GCM is
able to physically respond to the prevailing pattern of global
SSTs and therefore potentially better able to handle unusual
SST patterns.

3.2. Rainfall-based sorghum yield prediction

In general, the accuracy of yield forecasts decreased with
increasing lead-time, regardless of the predictor or method
(Fig. 2). This is expected because an increasing proportion of
weather is observed rather than estimated or sampled from
the climatological distribution as the growing season pro-
gresses. Decreasing skill of seasonal rainfall forecasts at the
longer lead-times also contributed to the drop in predictability
in May and June. In several instances, yields were slightly
more predictable in May (based on April predictor observa-
tions) than in June, consistent with the slight increase in
apparent predictability of rainfall.

Table 3 – Correlation between observed July–September precipitation total, frequency andmean intensity, and predictions
from GCM wind fields and SST indices, 1957–1998

Station May June July

GCM SSTs GCM SSTs GCM SSTs

Cumulative rainfall
Dori 0.17 0.41** 0.42** 0.28 0.33* 0.26
Ouahigouya !0.19 0.24 0.25 0.23 0.20 0.39**
Ouagadougou 0.09 0.43** 0.32* 0.34* 0.36* 0.40**
Fada N’gourma 0.47** 0.43** 0.21 0.37* 0.30 0.44**
Bobo-Dioulasso 0.21 0.13 0.19 0.20 0.37* 0.34*
Average 0.38* 0.56*** 0.50*** 0.51*** 0.56*** 0.65***

Rainfall frequency
Dori 0.39* 0.38* 0.27 0.31 0.41** 0.44**
Ouahigouya !0.51 0.18 0.05 0.25 !0.12 0.09
Ouagadougou 0.33* 0.51*** 0.30 0.58*** 0.42*** 0.57***
Fada N’gourma 0.48** 0.57*** 0.41** 0.45** 0.56** 0.47**
Bobo-Dioulasso 0.19 0.56*** 0.26 0.50*** 0.39* 0.46**
Average 0.40** 0.58*** 0.40** 0.55*** 0.55*** 0.57***

Mean rainfall intensity
Dori !0.62 0.01 0.22 !0.05 !0.44 !0.30
Ouahigouya !0.28 0.54*** 0.30 0.43** 0.22 0.49**
Ouagadougou !0.16 0.02 !0.05 !0.01 !0.12 !0.12
Fada N’gourma 0.16 0.12 !0.63 0.18 !0.07 0.16
Bobo-Dioulasso !0.01 !0.04 !0.15 0.06 0.03 0.18
Average !0.32 0.39* 0.15 0.38* 0.11 0.43**

Frequency and intensity are based on a 1-mm occurrence threshold. Asterisks indicate significance at the 0.05 (*), 0.01 (**) and 0.001 (***) levels.
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With few exceptions, incorporating seasonal rainfall
forecasts improved yield predictionsmade early in the season
(Fig. 2). The benefit from seasonal rainfall forecasts was

greatest at the earliest forecast date, and largely disappeared
by July.

The Improved production technology showed the greatest
predictability at all lead-times (Table 4). The Hybrid showed
substantially weaker predictability than the Traditional and
Improved technologies for forecasts made through July.
Differences among technology scenarios diminished at later
forecast dates. These observations are consistent with the
physiological and phenological characteristics of the cultivars.
The Traditional and Improved cultivars are sown earlier than
the Hybrid and have longer duration, allowing more time to

integrate the effects of early rainfall anomalies on growth and
yield (Kouressy et al., 2007). They produce a variable amount of
biomass and number of tillers and panicles during pre-floral

stages. However, the Hybrid produces a single stem per plant.
Its grain yield is determined largely during panicle differentia-
tion and grain filling, which occur relatively late in the season.
Among the three, the Improved cultivar shows the highest
potential number of tillers and the greatest yield response to
resources (Kouressy et al., 2007). Although the cropmodel does
not simulate tillering explicitly, it does capture the response
patterns of each of the cultivars (Dingkuhn et al., 2008).

Crop response to rainfall is mediated by interactions
between the timing of rainfall, the soil water balance and
crop development. An important component of dryland cereal

Fig. 2 – Correlation between predicted sorghum yields and baseline yields simulated with observed weather, 1957–1998.
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response to drought is variability of crop physiological
sensitivity among phenological phases. Although drought
during the crop cycle generally has cumulative effects on yield
(van Oosterom et al., 1996), accurate yield prediction requires
weighting of phenological phases. The least sensitive period
occurs during vegetative development, after crop establish-
ment and before panicle initiation (roughly weeks 2–9 for
Traditional and Improved cultivars, weeks 2–5 for the Hybrid).

The most sensitive period is the subsequent reproductive
phase, from panicle initiation through flowering (about 4
weeks) (Premachandra et al., 1994). The flowering period,
which lasts only a few days, is particularly sensitive to

drought. During the later grain fill and maturation period,
tolerance to drought is intermediate for the Traditional and
Improved cultivars, but quite high in the case of theHybrid due
to its stay-green traits (Premachandra et al., 1994; Borrel and
Hammer, 2000). The SARRAHmodel reproduces these patterns
of drought sensitivity (Heinemann et al., 2008).

At the longer lead-times, the SST indices were better on
average than GCMwind fields as predictors of sorghum yields,
using regression (Fig. 2, Table 5). This is consistent with the
previously recognized tendency for the Sahel for rainfall
predictability to be greater from SST indices than from the

GCM, most clearly at the longer lead-times. In most instances,
the best May or June predictor of sorghum yields was also the
best predictor of July–September precipitation (Table 3). The
advantage of SST indices over the GCMpredictors tended to be
greatest for forecasts available in May.

Differences in yield predictability due to method (regres-
sion vs. stochastic disaggregation)were generally smaller than
differences due to predictor (Table 6). The direction of the
differencewas not consistent among forecast dates, locations,
production technologies or seasonal rainfall predictors. These
results therefore do not provide a basis for preferring one

method over the other.
The results suggest that latitude may influence the

contribution of seasonal rainfall forecasts to yield predict-
ability early in the growing season. May and June yield

Table 4 – Correlation between baseline sorghum yields,
simulated with observed weather and yields predicted
by regression from SST indices, 1957–1998

Station May June July August

Traditional technology
Dori 0.55*** 0.45** 0.67*** 0.87***
Ouahigouya 0.44** 0.45** 0.58*** 0.82***
Ouagadougou 0.62*** 0.64*** 0.73*** 0.85***
Fada N’gourma 0.13 0.13 0.42** 0.73***
Bobo-Dioulasso !0.03 0.03 0.49*** 0.77***
Average 0.55*** 0.52*** 0.70*** 0.90***

Improved technology
Dori 0.54*** 0.50** 0.81*** 0.95***
Ouahigouya 0.48** 0.50** 0.71*** 0.93***
Ouagadougou 0.73*** 0.80*** 0.88*** 0.97***
Fada N’gourma 0.24 0.39* 0.66*** 0.93***
Bobo-Dioulasso 0.07 0.30 0.69*** 0.97***
Average 0.64*** 0.62*** 0.83*** 0.98***

Hybrid technology
Dori 0.44** 0.33** 0.49*** 0.89***
Ouahigouya 0.27 0.28 0.46** 0.81***
Ouagadougou 0.31* 0.41** 0.43** 0.88***
Fada N’gourma 0.33* 0.20 0.34* 0.90***
Bobo-Dioulasso !0.03 0.08 0.13 0.73***
Average 0.39* 0.38* 0.54*** 0.91***

Asterisks indicate significance at the 0.05 (*), 0.01 (**) and 0.001 (***)
levels.

Table 5 – Correlation between observation and predic-
tions of precipitation and simulated sorghum yields
(Improved technology, regression-based), 1957–1998

Station GCM winds SST indices

May June May June

Sorghum yields
Dori 0.26 0.63*** 0.54*** 0.50***
Ouahigouya 0.24 0.50*** 0.48** 0.50***
Ouagadougou 0.51*** 0.71*** 0.73*** 0.80***
Fada N’gourma 0.33* 0.37* 0.24 0.39*
Bobo-Dioulasso 0.18 0.32* 0.07 0.30
Average 0.50*** 0.54*** 0.64*** 0.62**

July–September precipitation
Dori 0.17 0.42**
Ouahigouya !0.19 0.25 0.24 0.23
Ouagadougou 0.09 0.32* 0.43** 0.34*
Fada N’gourma 0.47** 0.21 0.43** 0.37*
Bobo-Dioulasso 0.21 0.19 0.13 0.20
Average 0.38* 0.50*** 0.56*** 0.51***

Asterisks indicate significance at the 0.05 (*), 0.01 (**) and 0.001 (***)
levels.

Table 6 – Correlation between baseline sorghum yields,
simulated with observed weather and yields predicted
from SST indices, 1957–1998

Station Regression Disaggregation

May June May June

Traditional technology
Dori 0.55*** 0.45** 0.59*** 0.41**
Ouahigouya 0.44** 0.45** 0.40** 0.40**
Ouagadougou 0.62*** 0.64*** 0.56*** 0.67***
Fada N’gourma 0.13 0.13 0.12 0.02
Bobo-Dioulasso !0.03 0.03 0.00 0.09
Average 0.55*** 0.52*** 0.54*** 0.49**

Improved technology
Dori 0.54*** 0.50*** 0.60*** 0.48**
Ouahigouya 0.48** 0.50*** 0.40*** 0.48**
Ouagadougou 0.73*** 0.80*** 0.59** 0.81***
Fada N’gourma 0.24 0.39* 0.36* 0.36*
Bobo-Dioulasso 0.07 0.30 0.08 0.34*
Average 0.64*** 0.62*** 0.62*** 0.60***

Hybrid technology
Dori 0.44** 0.33* 0.55*** 0.27
Ouahigouya 0.27 0.28 0.23 0.32*
Ouagadougou 0.31* 0.41** 0.30* 0.25
Fada N’gourma 0.33* 0.20 0.08 !0.33
Bobo-Dioulasso !0.03 0.08 0.08 0.13
Average 0.39 0.38* 0.54*** 0.34*

Asterisks indicate significance at the 0.05 (*), 0.01 (**) and 0.001 (***)
levels.
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forecasts that incorporated rainfall forecasts tended to be
better at the northern than the southern locations (Fig. 2). For
forecast dates up to July, predictability of yields was weakest
for the two southern-most locations, regardless of production
technology, predictor or method (Fig. 2, Tables 4–6). This
appears to be due to greater sensitivity of yields to rainfall in

the dryer north, as predictability of rainfall at these lead-times
does not show a corresponding north–south trend (Table 3).
Furthermore, Baron et al. (2005) showed a substantial north–
south gradient in the relative influence of precipitation and
solar irradiance on yields across a network of 30 stations
across the Sahel and savannah zones of West Africa (10–188N

Table 7 – Mean and standard deviation of simulated sorghum yields and rainfall through and after 1970

Station Mean S.D.

1957–1970 1971–1998 % change 1957–1970 1971–1998 % change

Yield—Traditional technology (kg ha!1)
Dori 416 225 !46.0 165 99 !39.8
Ouahigouya 670 462 !31.0 138 195 41.9
Ouagadougou 876 637 !27.3 175 279 59.7
Fada N’gourma 1017 847 !16.7 133 158 19.1
Bobo-Dioulasso 951 805 !15.4 123 195 59.3
Average 786 595 !24.3 65 123 90.1

Yield—Improved technology (kg ha!1)
Dori 1047 555 !47.0 561 322 !42.5
Ouahigouya 1832 1210 !33.9 427 587 37.3
Ouagadougou 2353 1616 !31.3 590 836 41.7
Fada N’gourma 2563 2272 !11.3 586 503 !14.3
Bobo-Dioulasso 2426 2118 !12.7 615 621 1.0
Average 2044 1554 !24.0 259 348 34.4

Yield—Hybrid technology (kg ha!1)
Dori 2233 1590 !28.8 605 674 11.3
Ouahigouya 3314 2503 !24.5 574 1197 108.7
Ouagadougou 2780 2613 !6.0 413 957 131.9
Fada N’gourma 2814 3025 7.5 367 471 28.4
Bobo-Dioulasso 3413 3433 0.6 413 696 68.7
Average 2911 2633 !9.5 220 523 138

July–September rainfall (mm)
Dori 437 349 !20.3 75 71 !5.4
Ouahigouya 526 434 !17.6 74 119 61.6
Ouagadougou 592 480 !18.9 133 128 !3.8
Fada N’gourma 706 523 !25.9 142 133 !6.0
Bobo-Dioulasso 789 625 !20.8 144 114 !21.2
Average 610 482 !21.0 41 74 79.2

Fig. 3 – Observed (simulated for yields) and (a and b) July predictions of July–September precipitation and (c and d) sorghum
yields simulated with Improved production technology, and multi-decadal variation trend estimated by a spectral
smoothing filter with period of 15 years, average among stations, 1957–1998.
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latitude). Precipitation accounted for the greatest portion of
simulatedmillet yield variability north of about 138N, but solar
irradiance has the dominant influence in the wetter region to
the south. FadaN’gourma and Bobo-Dioulasso lie in the region
where yield variability is controlled more by solar irradiance

than by rainfall. Predictability of sorghum yields based on
antecedent rainfall and climatology does not continue to
increase toward the north of the country, but is greatest in
Ouagadougou. This is likely a result of calibrating the
phenology of each of the three cultivars to the latitude of
Ouagadougou. At the dryer locations to the north, cultivars
calibrated for Ouagadougou would be subjected to additional,
unrealistic water stress at the end of the season.

3.3. Yield prediction and multi-decadal variations

Mean rainfall decreased substantially at every location and in

several cases its variability increased after 1970 (Table 7).
Simulated yields showed a similar mean reduction associated
with the shift in rainfall regime. Although the percent
reduction in precipitation after 1970 was fairly consistent
across locations, impact on yields was greater for the dryer
northern locations. In the three southern locations, the shift in
rainfall regime did not reduce the yields simulated for the

Hybrid technology, but did substantially increase their year-
to-year variability. This can be explained by the nonlinearity of
crop response to rainfall; grain yields are more sensitive to a
given change in rainfall where the average rainfall is below the
optimum than where it is near or above the optimum. This is

also the case when comparing wet and dry locations (Baron
et al., 2005). We speculate that, because the Traditional and
Improved cultivars were planted substantially earlier than the
Hybrid, they were also more affected by variation in the
rainfall onset date that tends to be associated with changes in
seasonal total rainfall.

Both empirical SST indices and GCMwind fields captured a
substantial proportion of the multi-decadal component of
variability observed in the rainfall record, as estimated by a
spectral smoothing filter, although predictions based on SST
indices appear to follow the multi-decadal variations more
closely (Fig. 3a and b). Yields predicted from the two sets of

seasonal rainfall predictors captured most of the influence of
observedmulti-decadal rainfall variability on simulated yields
(Fig. 3c and d).

The presence of multi-decadal variations in West African
monsoon precipitation and in resulting yield simulations
complicates the evaluation of predictions. Trends that appear
in both predicted and observed time series can account for a

Table 8 – Correlation between predicted (by SST regression) and baseline sorghum yields simulated with observed station
weather under Improved technology, raw results and residuals about a trend estimated by a smoothing filter, 1957–1998

Station May June July August

Raw Residual Raw Residual Raw Residual Raw Residual

SST regression
Dori 0.54*** 0.16 0.50*** 0.20 0.81*** 0.77*** 0.95*** 0.94***
Ouahigouya 0.48** 0.27 0.50*** 0.38* 0.71*** 0.64*** 0.93*** 0.93***
Ouagadougou 0.73*** 0.57*** 0.80*** 0.70*** 0.88*** 0.80*** 0.97*** 0.95***
Fada N’gourma 0.24 0.16 0.39* 0.37* 0.66*** 0.61*** 0.93*** 0.93***
Bobo-Dioulasso 0.07 0.03 0.30 0.31* 0.69*** 0.70*** 0.97*** 0.97***
Average 0.64*** 0.29 0.62*** 0.39* 0.83*** 0.73*** 0.98*** 0.97***

GCM regression
Dori 0.26 !0.09 0.63*** 0.39* 0.81*** 0.82*** 0.91*** 0.90***
Ouahigouya 0.24 0.17 0.50*** 0.40** 0.68*** 0.70*** 0.92*** 0.93***
Ouagadougou 0.51*** 0.06 0.71*** 0.63*** 0.90*** 0.86*** 0.97*** 0.95***
Fada N’gourma 0.33* 0.29 0.37* 0.39* 0.67*** 0.62*** 0.94*** 0.94***
Bobo-Dioulasso 0.18 0.20 0.32* 0.36* 0.70*** 0.74*** 0.96*** 0.96***
Average 0.50*** 0.23 0.54*** 0.37* 0.84*** 0.79*** 0.95*** 0.95***

Asterisks indicate significance at the 0.05 (*), 0.01 (**) and 0.001 (***) levels.

Table 9 – Mean and coefficient of variation (CV) of reported (Rep.) regional yields, and baseline yields simulated with
observed station weather based on Traditional (Trad.) and Improved (Impr.) production technologies, 1984–1998

Station District Mean (kg ha!1) CV

Rep. Simulated Rep. Simulated

Trad. Impr. Trad. Impr.

Dori Sahel 671 230 519 0.340 0.528 0.686
Ouahigouya North 634 479 1270 0.254 0.459 0.473
Ouagadougou Center 768 540 1222 0.220 0.384 0.354
Fada N’gourma East 851 820 2127 0.159 0.205 0.244
Bobo-Dioulasso Haut Bassin 1160 854 2242 0.297 0.243 0.302
Average 824 584 1476 0.185 0.225 0.237
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substantial portion of the correlation between the two series.
Removing the multi-decadal component of variability in
simulated and predicted yields reduced correlations between
them, indicating that multi-decadal accounts for a substantial
portion of the predictability (Table 8). The influence of multi-
decadal rainfall variability diminished with decreasing fore-
cast lead-time.

Multi-decadal rainfall variability has several important

implications for food security early warning and response.
On the one hand, it suggests that predictability early in the
growing season is weaker at an interannual time scale than
simple measures of goodness of fit might suggest. On the
other hand, awareness of shifts between wetter and dryer
climate regimes and the possibility thatWest Africamight be
returning to a wetter regime have major implications for the
region’s ability to meet its food needs. It is currently not
possible to predict accurately how long a phase of multi-
decadal variability will persist. However, rainfall and yield
forecasts for the current season, based either on GCM output

or on statistical prediction from SST indices, appear able to
capture the immediate effects of such shifts. Furthermore,
monitoring global ocean temperatures that are associated
with multi-decadal rainfall variations in the Sahel (Giannini

et al., 2003) might provide opportunity for improving
operational crop forecasts by shifting the weight given to
predictors from the Pacific and Atlantic basins. During the
wetter period (approximately 1950–1969), Sahel rainfall
showed a much stronger linkage with tropical Atlantic
SST, whereas ENSO has had stronger influence during the
drier post-1970 period (Janicot et al., 1996;Ward, 1998; Ndiaye
et al., submitted for publication). This pattern is also
apparent in records from the first half of the twentieth
century, when the tropical Atlantic dominated variability
during wetter decades and the tropical Pacific dominated

during drier periods (Ward, 1998).

3.4. Reported regional yield statistics

We compared simulated yields with reported regional yields
to get an idea of how they relate in magnitude and
variability. The results should not be interpreted as an
evaluation of predictability of regional crop yields, as the
point scale of our analyses does not match the regional scale
of historic production statistics. Furthermore, we did not
attempt to calibrate model simulations, or to incorporate

any information (e.g., soils, germplasm or management)
from crop reporting districts beyond weather data from a
single station.

Regional yields reported for the districts that contain the
study locations generally fell within the range of yields
simulated with Traditional and Improved production tech-
nologies (Table 9, Fig. 4). Mean reported yields were closer to
simulations for the Traditional technology except for the
northernmost Sahel district where mean yields exceeded the
mean for the Improved scenario by 29%. This suggests that
average simulated yields were realistic for the expected level
of technology that farmers employ. While there is some use of

Fig. 4 – Sorghum yields simulated for Traditional and
Improved production technology, and reported regional
yields for the corresponding district, 1984–1998.

Table 10 – Correlations of simulated and predicted (by
SST regression) sorghum yields with reported regional
average yields, 1984–1998

District Simulated Forecast

July August

Traditional technology
Sahel 0.60* !0.03 0.52*
North 0.76*** 0.12 0.64**
Center 0.60* 0.27 0.64**
East 0.46y !0.27 0.14
Haut Bassin 0.42 0.18 0.18

Improved technology
Sahel 0.55* 0.16 0.54*
North 0.73** 0.47y 0.66y

Center 0.70** 0.38 0.68**
East 0.03 !0.32 !0.07
Haut Bassin 0.30 0.33 0.25

Symbols indicate significance at the 0.1 (y), 0.05 (*), 0.01 (**) and
0.001 (***) levels.
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high-yielding hybrids and varieties, and intensive manage-
ment, adoption has generally been low in part because

traditional land races with high photoperiod sensitivity are
well adapted to the high variability of seasonal rainfall and
growing season length that characterize Sudano-Sahelian
West Africa.

Observed variability was greater for simulated yields than
for reported yields (Table 9). This bias is a predictable and
often-reported result of the difference in scale between
reported and simulated yields (Hansen and Jones, 2000). The
imperfect correlation of yields in space causes the year-to-
year variability of regional average yields to be substantially
lower than the average yield variability within the many

individual plots that comprise the district. The one excep-
tion to this tendency was Haut Bassin, in the southwestern
part of the country, where the reported 1992 yield is
unrealistically high—3.3 standard deviations higher than
the average.

Positive correlations between reported and simulated
yields were significant at p < 0.05 for the three northern
districts (Table 10). These districts also show significant
correlations with 15 August forecasts, but not with forecasts
made at earlier dates (Fig. 5). The low correlations between
model-based yield predictions and reported yields are likely

due to a combination of rainfall forecast uncertainty, crop
model (including calibration and aggregation) error, poor

representation of the crop reporting district by a single station,
and the small number of years of overlap (15) between
available production statistics and available daily weather
data for crop simulations.

Cross-validated linear regression estimates of reported
regional sorghum yields (Table 11) provide a benchmark for

Fig. 5 – Sorghum yields predicted for Traditional and Improved production technology, and reported regional yields for the
corresponding district, 1984–1998.

Table 11 – Correlations of reported sorghum yields with
estimates from a linear regression function of observed
seasonal rainfall (May–September), and of a combination
of observed antecedent rainfall total and forecasts
through the remainder of the growing season, 1984–1998

District Observed Forecast

July August

Sahel 0.48y 0.20 0.07
North 0.61* 0.23 !0.52
Center 0.27 0.10 0.07
East 0.29 !0.50 !0.87
Haut Bassin !0.03 0.01 !0.06

Symbols indicate significance at the 0.1 (y) and 0.05 (*) levels.
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evaluating whether the use of a dynamic crop model adds
value beyond simpler statistical forecasts based on cumula-
tive precipitation. Correlations between reported yields and
regression estimates from observed seasonal rainfall were

significant at p < 0.05 only in the North district, and were not
significant for July or August forecasts at any location.
Comparing results in Tables 10 and 11, SARRA-H driven with
daily weather data appears to follow reported regional yield
response to rainfall variability more closely than a linear
regression model that uses seasonal totals of the same
precipitation inputs. This was true both for concurrent
relationships based purely on observed precipitation, and
for forecasts that combined observed antecedent rainfall with
SST predictors of rainfall for the remainder of the growing
season.

Given that the crop simulations and model-based
predictions did not attempt to represent soils of each
location, calibrate crop cultivars or practice to local
environments, or correct aggregation bias, the prospect of
simulating regional yields given the presence of significant
positive correlations with reported yields in two of the
districts (Table 10). There are several avenues, in addition to
potential improvements in seasonal rainfall forecasts dis-
cussed earlier (Section 3.1), for improving sorghum yield
forecasts at a district scale. First, crop model error can be
reduced through local calibration of cultivars, the use of

measured soil hydrological properties and better accounting
for the spatial distribution of management practices. Our
crop simulations were not tailored well to local conditions.
Second, simulations need to be scaled up from individual
stations to regions. Aggregation error can be reduced either
by calibrating simulations to reported yields or by sampling
the heterogeneity of the environment (Hansen and Jones,
2000). If the spatial distribution of weather, soil properties
and management is known or can be estimated, sampling
environmental heterogeneity in simulation inputs has the
advantages of being less dependent on the quality and
consistency of historic yield statistics, better representing

average climatic conditions, and less constrained to the
boundaries of crop reporting districts. Finally, we incorpo-
rated only rainfall forecasts into our yield predictions, but
sorghum yields are sensitive to other meteorological
variables (e.g., temperatures, solar irradiance, humidity
and wind) that might have some predictability from the
same large-scale atmospheric forcing that provides the basis
for forecasting precipitation. Solar radiation, for example, is
believed to become more important and precipitation less
important in the higher-rainfall region toward the south
(Baron et al., 2005), although solar radiation tends to be

correlated with rainfall.

4. Conclusions

Our results show that seasonal precipitation forecasts can
reduce the climatic component of uncertainty and thereby
provide modest increase in the accuracy of crop forecasts
based on monitored weather alone, in the semiarid rainfed
environment of the West African Sahel, particularly at longer
lead-times. This raises the prospect of providing probabilistic

forecasts of crop production early in the growing season.
However, incorporating seasonal forecasts was not sufficient
to provide estimates in July that have the same accuracy that
climatology-based forecasts have in August, roughly the time

that they are currently issued to inform food security
interventions.

Although we did not attempt to simulate yields at a
reporting district scale, our results provide some encoura-
ging evidence. First, despite the scale mismatch and absence
of local calibration, simulations using a single station
explained a significant proportion of year-to-year variability
of reported yields for the surrounding districts at two of the
five study locations. Second, the assumptions in the
Traditional and Improved technology scenarios resulted in
average simulated yields that appear reasonable for the low

levels of production technology (i.e., predominantly tradi-
tional landraces with limited adoption of improved varieties
and hybrids) that regional yield statistics reflect. Third,
stronger correlations of historic yields with simulated yields
than with regression-based predictions suggests that a
dynamic, process-oriented crop model run with daily rain-
fall is likely to perform better than the best linear statistical
model driven by cumulative rainfall. Finally, the reduction in
climatic uncertainty from incorporating seasonal forecasts
into simulations, demonstrated at the scale of individual
stations, should benefit regional yield simulations even

more than point-scale simulations, as rainfall forecast skill
tends to improve with scale of aggregation (Gong et al.,
2003).

We discussed several promising avenues that may further
increase accuracy (at a given lead-time) and lead-time (at a
given accuracy) of crop yield forecasts: improvements to
seasonal rainfall forecasts, better local calibration of soil and
management inputs, capturing more of the observed varia-
bility of the environment (weather, soils, management) in
space, and incorporating monitoring and forecasts of addi-
tional meteorological variables. We conclude that there is a
good prospect for providing useful food security early warning

information, incorporating climate-based yield forecasts,
earlier in the growing season than is currently available.
Whether this would translate into earlier response to emer-
ging food crises depends in part on whether food security
institutions, which traditionally require a high degree of
certainty before taking action (Broad and Agrawala, 2000;
Haile, 2005), have the flexibility to respond to earlier,
probabilistic information.
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Nicholson, S.E., Somé, B., Koné, B., 2000. An analysis of recent
rain conditions in West Africa, including the rainy seasons
of the 1997 El Niño and 1998 La Niña years. Journal of
Climate 13, 2628–2640.

Olsson, L., Elklundh, L., Ardo, J., 2005. A recent greening of the
Sahel—trends, patterns and potential causes. Journal of
Arid Environments 63, 556–566.

Parlange, M.B., Katz, R.W., 2000. An extended version of the
Richardson model for simulating daily weather variables.
Journal of Applied Meteorology 39, 610–622.

Penning de Vries, F.W.T., Jansen, D.M., Ten Berge, H.F.M.,
Bakema, A., 1989. Simulation of Ecophysiological Processes
of Growth in Several Annual Crops. PUDOC, Wageningen,
The Netherlands, 291 p.

Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.,
1989. Numerical Recipes: The Art of Scientific Computing.
Cambridge University Press, 702 pp.

Premachandra, G.S., Hahn, D.T., Joly, R.J., 1994. Leaf water
relations and gas exchange in two grain sorghum genotypes
differing in their pre- and post-flowering drought tolerance.
Journal of Plant Physiology 143, 96–101.

Ritchie, J.T., Alagarswamy, G., 1989. Simulation of sorghum and
pearl millet phenology modeling the growth and
development of sorghum and pearl millet. In: Virmany,
S.M., Tandon, H.L.S., Alagarswamy, G. (Eds.), Res. Bull.12.
ICRISAT, Patanchery, India, pp. 24–29.

Robertson, A.W., Lall, U., Zebiak, S.E., Goddard, L., 2004.
Improved combination of multiple atmospheric GCM
ensembles for seasonal prediction. Monthly Weather
Review 132, 2732–2744.

Roeckner, E., Arpe, K., Bengtsson, L., Christoph, M., Claussen,
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Malézieux, E., Trébuil, G., Jaeger, M. (Eds.), Modélisation des
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