Chapter 1: Weather Risk Management for Agriculture 

By Joanna Syroka

1. Introduction to Weather Risk

The emerging weather risk market offers new risk management tools and opportunities for agriculture.  The aim of this chapter is to illustrate how an end user in the agricultural industry could use a market-based solution to mitigate the financial impact of weather on its business operations.  The chapter draws information from the wealth of literature written on the subject of weather risk management, with an aim to provide the reader with a step-by-step guide to how weather risk management instruments could be used and developed for the agricultural sector.  The chapter is divided into four sections. Section 2 will focus on the key steps required to structure a weather risk management solution, from identifying the risk to execution.  Section 3 will focus on the pricing of weather risk management instruments, giving a brief overview of how the weather market approaches and values weather risk and the implication this has for the end user.  Section 4 will focus on the pre-requisites for weather risk management instruments, namely the weather data used to construct weather indices and to settle contracts.  This section will also touch upon data cleaning and analysis that must be considered when pricing and structuring a potential transaction.  Section 5 will summarize the chapter and reference sources for further reading on weather risk management.    

The Financial Impact of Weather 

Weather risk impacts individuals, corporations and governments with varying degrees of frequency, severity and cost.  Around the world people face the vagaries of the weather on a daily basis.  The media continually reports catastrophic weather events – floods, hurricanes and droughts – that impact individuals’ property, health and lives.  Consequently, governments are also financially exposed to weather risk.  They are called upon to provide direct financial, nutritional and housing support to their citizens in the event of weather-related disasters and must increase spending for rehabilitation and reconstruction of infrastructure and assets as a result of damage incurred.  Moreover the economy of a country is also at risk to weather through business interruption, supply shocks, diversion of domestic investment from productive activities to mitigation of disasters’ impacts and, for some countries, a reduction in foreign investment in the aftermath of an extreme weather-related event.  For example, with a death toll exceeding 30,000 (14,000 in France alone), the heat wave and drought across Europe in the summer of 2003 was the worst natural disaster in the region in the past 50 years. Aside from the human impact, the extreme conditions particularly affected the agriculture, forestry and energy sectors: the total financial impact was estimated to exceed €13 billion - the financial impact on agriculture and forestry in France was estimated to be €4 billion alone.  As a result the extreme summer heat appears to have contributed to a weak European GDP
 in the third quarter of 2003.

While often such effects are reversible and short-term, the impact on the economy of a poor country can be significant and long lasting.  Between 1997 and 2001, the average damage per natural disaster in low-income countries was five percent of GDP
.  Evidence from sixteen Caribbean countries shows, for example, that one percentage point of GDP in direct damage from natural disasters can reduce GDP growth by half a percentage point in the same year
.  Furthermore the humanitarian cost of weather-related disasters is also greater in the developing world: approximately 80%
 of all fatalities due to weather disasters from 1980-2003 occurred in the “uninsured world”, comprised predominantly of low-income countries.  
However, even non-catastrophic weather events have a financial impact.  The U.S. Department of Commerce estimates that nearly one-third of the U.S. economy, or $1 trillion
, is modulated by the weather and that up to 70% of all U.S. companies are weather sensitive.  Weather risk can impact a business through its overall profitability or simply through the success or failure of an initiative as a consequence of the weather.  Like governments, businesses can face both demand and supply driven weather risk.  Energy companies, for example, can be exposed to demand driven weather risk.  For instance, in the event of a warmer than average winter, gas companies, in particular those who deal with domestic customers, face a potential drop in gas sales as customers do not use as much gas as expected to heat their homes.  Therefore even if the company has adhered to prudent price risk management practices by protecting their sales margin from fluctuations in the gas supply price, a drop in sales volume from expected levels can still have a significant impact on budgeted revenues simply through weather-driven demand fluctuations.  A supply-side example of weather risk can be found in the construction industry.  Cold and wet weather conditions can impact construction progress as building materials have specific weather requirements, for example concrete cannot be poured in wet or below-freezing conditions.  The contractor therefore must assume this supply-driven weather risk, which can significantly delay a construction project and result in hefty penalties if the project is not completed on-schedule.  This recent excerpt from the Central New Jersey Home News Tribune illustrates the example: 

“The extension of Route 18 into Piscataway, which had been discussed for more than four decades and has frustrated motorists since construction began in June 2002, may not be completed until fall 2005 because of adverse weather conditions. The first phase of the project -- to provide a River Road overpass and an extension of Metlars Lane from the John A. Lynch Sr. Bridge to Hoes Lane -- had been scheduled to be completed by November. But the project's construction company, Slattery Skanska Inc. of Whitestone, N.Y., hampered by a wet spring and summer and sustained cold weather this winter, has applied for a delay, according to Department of Transportation spokesman Mike Horan. 

"A lot of our projects have been hampered by the weather," said Horan.  Horan explained that when the ground is frozen a proper bed cannot be laid for roadways, and asphalt cannot be used until the temperature remains above freezing. … Horan explained that the application for a delay beyond November will be studied by the DOT. Unless a delay is granted, the construction company could face penalties, according to Horan.”

Weather has traditionally been the scapegoat in business for poor financial performance
.  Annual reports, financial statements and press releases frequently contain declarations such as “[c]ooling degree days were 21 percent below last year’s quarter and 16 percent below normal. The effects of milder weather compared with last year had a negative impact on EBIT of about $35 million for the quarter.”
, “4 cents per share [decline] for lower gas deliveries due to warmer weather in the fourth quarter of 2003”
, “[d]ifferences in heating demand caused by weather variations between years resulted in a $13 million margin decrease as warmer-than-normal temperatures were experienced during both years. During 2003, operating margin was negatively impacted $32 million by the weather, while in 2002 the negative impact was $19 million.”
 and “Europe's performance continued to be impacted by unfavorable summer weather with volume down 12 percent in the third quarter and year-to-date volume down 6.5 percent.”
 Given such examples it is not surprising that the financial community has begun to seek practical solutions to controlling the financial impact of weather.  For example, Centrica Plc, one of the largest domestic gas supplier in the UK, is one of a number of utilities that has chosen to manage its weather risk in order to “protect the company against variability in earnings of its gas retail business due to abnormal winter temperatures in the UK”
 and has been doing so since 1998.  London-based Corney and Barrow Wine Bars Limited has deployed several weather hedges to provide financial protection against cool summers resulting in poor customer patronage, “After the exceptional summer of 2003 Corney and Barrow was keen to secure protection against the possibility of the reverse experience [in 2004]”
.  Blaming lost revenues or increased expenses on weather may no longer be an excuse accepted by stakeholders.  With the emergence of a market for weather risk management products, a business can now be protected from such ancillary risks that create unpredictable earnings streams.  Just as interest rate and currency risks are currently managed through market-based solutions, CFOs can now neutralize weather risks that increase business uncertainty, allowing a company to focus on its core business and to protect earnings per share forecasts and growth.

For instance, in September 2003 Northern Foods, a UK-based food company, announced that its second-half profits would be “significantly lower” than last year. The group blamed unseasonably hot weather that had reduced demand for meat pies and damaged harvests
. The profit warning prompted market analysts to cut their forecasts for the food group’s full-year results, triggering a 15 per cent fall in Northern Foods shares and coinciding with the resignation of the company’s CEO. As financial analysts are beginning to highlight the impact of weather on operations and corporate earnings they are also beginning to recognize the advantage of weather risk management, as echoed by a UBS analyst, “Earnings surprises are not liked by the market...I believe weather futures will be one of the fastest growing financial instruments over the next decade.”
 It is clear a company that actively manages its weather risk is in a stronger position than one that does not.
The Weather Market

In 1997 a formal weather risk market was born through the first open market derivative transaction indexed to weather in the United States.  Motivated by the deregulation of the energy industry which led to the break-up of regulated monopolies in electricity and gas supply, the nascent weather market responded to the need for energy companies to increase operational efficiency, competitiveness and shareholder value.  In 1996, the Kansas-based energy company Aquila entered into a transaction with New York-based Consolidated Edison that combined temperature and energy indicators, protecting the latter against a cool August that would reduce power sales. However the first publicized transaction in 1997 was between energy companies Koch Energy and Enron.  Additional deals soon followed with other energy market participants wanting protection against risks, primarily temperature, associated with volumetric fluctuations in energy.

In the context of the weather market, weather risk is defined as the financial exposure that an entity – an individual, government or corporation – has to an observable weather event or to variability in a measurable weather index that causes losses to either property or profits. All weather contracts are based on the actual observations of weather at one or more specific weather stations.  In contrast to traditional insurance products, where recovery is determined on a loss-adjustment basis, weather risk management products – packaged as either (re)insurance or derivatives – are primarily settled off of the same index that has been determined to cause losses. Weather-indexed risk management instruments therefore provide financial protection based on the performance of a specified weather index in relation to a specified trigger. The design of a verifiable and objective index which correlates closely with the underlying weather impact not only streamlines traditional insurance practices but also creates opportunities to manage non-catastrophic – or near-the-mean – risk that impacts a company’s earnings. Previously, traditional insurance products primarily dealt with physical losses of assets (e.g. property and infrastructure) that were associated with low frequency/high severity catastrophic weather events. 

In 2001, the Weather Risk Management Association (WRMA) – the industry body – commissioned PricewaterhouseCoopers (PWC) to conduct a survey of weather risk contracts executed among WRMA members and survey respondents from October 1997 to March 2001, and since then on an annual basis. Since 1997, the survey has shown that over US$20 billion has been transacted through the weather risk market to date – the market has grown to around US$4.6 billion outstanding risk for the year April 2003 – March 2004
 (Figure 1), although some believe this to be an underestimate
.  There is active trading in U.S., European and Japanese cities (Figure 2) with a few transactions outside these three main trading hubs, most notably agricultural transactions in Mexico, India and South Africa. The market has also evolved to include non-energy applications.  Survey respondents, when asked to list requests received from potential end users of weather risk management products, identified end users in the retail, agriculture, transport and leisure and entertainment industries (Figure 3), although energy still contributes approximately 56% of the potential weather risk management end user market.  As a result of this expansion the market has also broadened its product offering to include transactions on non-temperature indices
 such as rainfall, wind and snow (Figure 4).   One of the most notable transactions in the market was that of SFB Groep
, a Dutch construction workers’ union and employers’ federation, through Dutch investment bank ABN AMRO in 2001.  The body, who have re-entered the market since, bought multi-year protection to provide compensation in the case of cold weather halting daily construction work, with a notional value of several hundreds of millions of Euros. With the coming deregulation of energy markets in continental Europe and Japan and with increased focus on shareholder value and risk management in the financial markets, the weather market is forecast to grow further. 

Today the key market participants include (re-)insurers, investment banks and energy companies.  (Re)insurers and investment banks provide weather risk management products to end user customers – such as Corney and Barrow Wine Bars Limited, Centrica Plc and the Dutch construction workers’ union and employers’ federation – and form the primary market; all three participate in a secondary market in which players transfer weather risk through over-the-counter (OTC) financial transactions and exchange-based derivative contracts on the Chicago Mercantile Exchange
 (CME) amongst themselves to diversify and hedge their portfolios.  In addition to core weather market participants, professional investors, such as alternative risk hedge funds, are also becoming interested in weather risk and are beginning to source excess risk from the primary weather market as well as participating in the secondary market through the CME.  Weather is an uncorrelated risk that can enhance their portfolio positions and differentiate them from other funds.  

Weather risk management is also being introduced to the developing world through the work of organizations such as the World Bank’s Commodity Risk Management Group (CRMG) and the United Nation’s World Food Programme (WFP). The World Bank was involved in the first index-based weather risk management program in India in June 2003, and is currently working on several projects around the world.  The small pilot program was launched by Hyderabad-based micro-finance institution BASIX and Indian insurance company ICICI Lombard in conjunction with CRMG, where 230 groundnut farmers in Andhra Pradesh bought weather insurance to protect against low monsoon rainfall
.  Currently the WFP, in conjunction with the World Bank, are investigating the feasibility of weather-based insurance as a reliable, timely and cost-effective way of funding emergency operations in countries such as Ethiopia
. Work is also underway to see if developing country governments in southern Africa can benefit from weather risk management products and strategies.
  The global weather-risk market is particularly interested in these types of transactions, as they provide much sought after diversification to their books through new locations and risks.

Weather Risk and Agriculture

One of the most obvious applications of weather risk management products, be it weather insurance or weather derivatives, is in agriculture and farming.  Indeed 13%
 of the end user requests in the weather market are now focused on the agricultural sector (Figure 3). Weather impacts many aspects of the agricultural supply and demand chain.  From the supply side, weather risk management can help control both production or yield risk and quality risk.  

Technology plays a key role in production risk in farming. The introduction of new crop varieties and production techniques offers the potential for improved efficiency, however agriculture is also affected by many uncontrollable events that are often related to weather – including excessive or insufficient rainfall, hail, extreme temperatures, insects and diseases – that can severely impact yields and production levels. Countless examples can be given on the impact of cold temperatures on deciduous fruit
, deficit rainfall on wheat
, excess rainfall on potato yields
 and even temperature stress on cattle and thus dairy production
.  In 2001 California’s wine revenue fell by over $200 million, which was largely attributed to frost damage of wine grapes in April of that year
.  In 2003, 64% of Ukraine’s winter wheat crop was destroyed due to winterkill temperatures and 40-50% of northeastern England’s oil rapeseed crop was lost to due excessive rain at harvest in August 2004.  The costs associated with drops in expected or budgeted production due to such uncontrollable factors can have a significant impact on a producer’s revenues and contractual obligations, as reflected in an financial statement of JG Boswell, the largest U.S. cotton grower, “Both 1997 and 1998 fiscal results were impacted by extremely harsh winter patterns that flooded over 41,000 acres of the Company’s Corcoran farming districts causing a decrease of $1,000 per acre or $41 million in gross revenues. Additionally, cold and wet spring weather delayed cotton planting by up to six-weeks which resulted in some of the worst farming conditions management has ever seen.”  A producer may seek protection against adverse weather conditions that impact the yield of the crop farmed.

Weather can also impact the quality, if not the absolute production levels, of a crop.  An example can be taken from the brewing industry.
 A large brewery needs a specific quality of barley for its production of beer and contracts land for barley production in order to have direct access to the quality of barley it needs. The key risk to the quality of the barley produced occurs once the plant is mature where excessive rain and humidity will cause the seed to lose weight and discolor.  In years where the crop quality is insufficient, the barley can be used for animal feed or alcohol at a lower market value, but the brewery will still need to purchase the barley at market prices incurring an additional cost to the brewery – a cost that can be insured against by the purchase of an appropriate weather risk management product.  On the demand side, weather also impacts related agricultural products through the use of pesticides, fertilizers and herbicides.  Agricultural chemical producers, for example, can use weather risk management instruments to hedge against the costs associated with fluctuations in the demand for chemicals by farm operators.  Increases in pesticide sales are often related to weather conditions, particularly accumulated Growing Degree Days
, that impact the gestation period and hence the birth rate of pests.  Cotton boll weevil, which costs cotton producers in the U.S. $300 million a year
, is an example of a weather sensitive pest whose numbers differ from year to year largely due to the severity of the winter.  In extremely cold winters weevil numbers drop significantly, directly affecting the net earnings of an agrochemical company.  Chemical producers could hedge their earnings volatility through fluctuations in pesticide sales by purchasing a weather risk management instrument specifically indexed to the phenology of pests their products target.  Alternatively, as part of a marketing strategy, they could offer their clients an embedded weather option in the chemical sales contract to provide customers protection from the cost of extra applications as a result of weather conditions favoring pest development
.

Index-based weather insurance is a relatively new product and the use of weather risk management products in the agricultural sector is still in its infancy, with very few publicized transactions in the U.S. and Europe.  However there have been a number of agricultural transactions outside of the main weather market trading hubs, most notably in Canada (Ontario – maize; Alberta – forage), Argentina (Sancor – dairy), South Africa (Gensec Bank – apple cooperative freeze cover) and India (ICICI Lombard – groundnut, cotton, coriander and orange).  Given weather is one of the biggest risks faced by farmers, weather-indexed risk management products have been suggested as a potential alternative to the traditional crop insurance programs for smallholder farmers in the emerging markets
.  Traditional multi-peril crop insurance programs have several problems when they are translated from the developed world to emerging markets (see Chapter 3 for further discussion).  Most notably the high unit administration costs, high entry barriers for farmers and difficulties of control make traditional crop insurance schemes neither practical nor cost effective in small-farmer economies.  These new weather risk management insurance instruments provide a viable alternative to traditional insurance instruments, potentially offering real advantages to households, businesses and governments in developing countries.
2. Structuring a Weather Risk Management Solution 

Developing a successful weather risk management and transfer program for agriculture involves four essential steps:

1) Identifying significant exposure of an agricultural grower/producer to weather;

2) Quantifying the impact of adverse weather on their revenues;

3) Structuring a contract that pays out when adverse weather occurs; and 

4) Executing the contract in optimal form to transfer the risk to the international weather market. 

Each of the steps is outlined in the following four subsections and they are fully explored in the case studies in the next Chapter.

Identifying the Risk

Identifying weather risk for an agricultural grower or producer involves three steps: identifying the regions at risk to weather and the weather stations that reflected that risk; identifying the time period during which risk is prevalent; and identifying the weather index that is the best proxy for the weather exposure.  This latter step is the most critical in designing a weather risk management strategy based on an index. Rather than measuring the actual impact on crop yields – or related fluctuations in demand, supply or profitability – the index acts as a proxy for the loss experienced due to weather and is constructed from actual observations of weather at one or more specific weather stations.   

i. Location and Duration

All weather contracts are based on the actual observations of weather variables at one or more specific weather stations.  Transactions are based on either a single station, a basket of several stations or on a weighted combination of readings from multiple stations.  More information on the weather station and data requirements for weather risk management instruments will be given in Section 4.   If an individual farmer is interested in purchasing weather protection for his particular crop, the index-based weather contract must be written on a weather station nearest the farmer’s land in order to provide the best possible coverage for the farmer client.  A larger grower, with several production regions, may be more interested in purchasing a weather contract based on several weather stations that reflects the weather conditions in all areas covered by the business.  The grower’s risk management strategy can be either to purchase a weather contract on each of the identified weather stations or to purchase a single contract on a weighted average of several stations, with the weightings chosen to reflect the importance of the different stations to the overall weather exposure of the business. The approach chosen depends on the risk preferences and risk retention appetite of the grower, although generally the latter is a cheaper and more efficient approach. Retaining localized risks will most probably be a more cost-effective solution than transferring them to a third-party, but will still provide protection in situations where adverse weather affects several regions impacting the overall production portfolio of a producer. The latter approach will also reduce the risk of reliance on one weather station and hence the associated issue of basis risk
, which will be covered in Section 3.  
All contracts have a defined start and end date that limit the period over which the underlying index is calculated.  This calculation period describes the effective dates of the risk protection period during which relevant weather parameters are measured at the specified weather stations.  For agricultural end users, the duration of the weather contracts will be determined by the specific requirements of their business. Obvious examples include the growing season for the crop produced, for example April-October for corn in southern Europe, or a specific phase in the development of a crop that is particularly sensitive to a specific weather variable, such a rainfall during the three-week silking and tassleing period of corn
.  However the duration of contracts have the flexibility to address individual end user business exposures and can be weekly, monthly, seasonal and even multi-annual.  Final settlement of the weather contracts typically occur up to 40 days after the end of the calculation period, once the collected weather data has been cross checked and quality controlled by the relevant data-collecting body, usually the National Meteorological Service
.

ii. Underlying Indices

A weather index can be constructed using any combination of measurable weather variables and any number of weather stations that best represent the risk of the agricultural end user.  Common variables include temperature and rainfall, although transactions on snowfall, wind, sunshine hours, streamflow, relative humidity and storm/hurricane location and strength are also possible and are becoming more frequent.  In contrast with energy, where the relationship between energy demand and weather is more transparent and linked primarily to temperature, in agriculture the relationship between crop yields or pesticide use is generally more complex, albeit still quantifiable.

For example, the normal process for designing an index-based weather insurance contract for an agricultural grower involves identifying a measurable weather index that is strongly correlated to a crop’s yield rather than the yield itself.  After gathering the weather data, an index can be designed by: i) looking at how the weather variables have or have not influenced yield over time; ii) discussing key weather factors with experts such as agro-meteorologists and farmers; and/or iii) referring to crop growth models which use weather variables as inputs for yield estimates; phenology models can be used to establish how weather variations relate to pest development.  A good index must account for the susceptibility of crops to weather factors during different stages of development, the biological and physiological characteristics of the crop and the properties of the soil. If a sufficient degree of correlation is established between the weather index and yield or crop quality, a farmer or an agricultural producer can insure his production or quality risk by purchasing a contract that pays in the case that the specified weather event occurs (or does not occur). The index possibilities are limitless and flexible to match the exposure of the agricultural grower or producer, as long as the underlying data is of sufficient quality (Section 4).  Examples weather indices for specific agricultural exposures are given below.  Although the examples are based on temperature and precipitation, the principles apply to all weather parameters recorded by ground-based meteorological weather stations.

Temperature

Temperature-based indices account for over 80% of the risk in the current weather market
.  Although most of these transaction are based on indices specifically designed for the energy industry – such as cumulative Heating Degree Day (HDD)
 values, days in which energy is used for heating, and cumulative Cooling Degree Day (CDD)
 values, days in which energy is used for air conditioning – temperature is also a pertinent weather variable for agriculture.  Whereas irrigation systems can often be used to regulate soil moisture for crops, temperature and its impact on crop yield and quality is often a more difficult parameter to control, particularly over the course of a growing season.  Temperature indices can be based on hourly, average, maximum or minimum temperature, either calculated on a cumulative (e.g. growing degree day) or event driven basis (e.g. frost risk).

Growing Degree Days.  Growing Degree Days (GDDs) is a common index used in the agricultural sector, similar to HDDs and CDDs in the energy sector.  GDDs are a measurement of the growth and development of plants (both crops and weeds) and insects during a growing season. Organisms that cannot internally regulate their own temperature are dependent on the temperature of the environment to which they are exposed. Development of an organism does not occur unless the temperature is above a minimum threshold value, known as the base temperature, and a certain amount of heat is required to for development to move from one stage to the next.  The base temperature varies for different organisms and is determined through research and scientific considerations.  A list of reported base temperature examples is given in Table 1
.  

Table 1. Reported Base Temperatures for GDD Computations for Crops and Insects

	Base Temperature           (deg Celsius) for GDD Computation
	Crop/Insect Example

	4.44
	Wheat, Barley, Rye, Oats, Flaxseed, Lettuce, Asparagus

	7.22
	Sunflower, Potato

	10.00
	Sweet Corn, Corn, Sorghum, Rice, Soy Bean, Tomato 

	6.67
	Corn Rootworm

	8.89
	Alfalfa Weevil

	10.00
	Black Cutworm, European Corn Borer

	11.11
	Green Cloverworm


A GDD is calculated by the following equation:

Daily GDD = max(0, (Taverage – L)); Taverage = (Tmax + Tmin)/2

(1)

where L is the baseline temperature and Taverage is the daily mean temperature, defined as the average of the daily maximum (Tmax) and minimum (Tmin) temperatures. If this average is greater than the threshold temperature L, the GDD accumulated for that day is the threshold temperature minus the daily average temperature. If the daily average temperature is less than the base temperature, then the GDD for that day is zero. Adding the GDD values of consecutive days gives the accumulated GDDs over a specific period.  

However, high temperatures can also cause development of certain organisms to cease.  The underlying temperature data can be modified to take this into account: if the daily minimum temperature is less than the baseline it is reset to the baseline level to avoid negative growing degree days; if the maximum temperature is greater than the upper limit it is reset to the upper limit, indicating no growth benefit from temperatures above that level. Once the minimum and maximum temperatures have been modified and a new average computed, the Modified Growing Degree Day (MGDD) value for the day is computed by comparing the modified average with the base temperature as in Equation 1.  MGDDs are typically used to monitor the development of corn, the assumption being that development is limited once the temperature exceeds 30 deg Celsius.  Other, more accurate methods to calculate GDDs, include considering the relationship between the growth rate and temperature of an organism by either estimating the diurnal variation in temperature or using hourly temperature readings. 

Accumulated GDDs are a good proxy for establishing the development stages of a crop, weed or insect and can give an indication as to the development and maturity of a crop or to when pesticide or herbicide applications should be scheduled.  Measuring the amount of heat accumulated over time provides a physiological time scale that is biologically more accurate than calendar days
; specific organisms need different accumulated GDDs to reach different stages of development.  For example, the growing cycle of corn consists of vegetative, reproductive and maturation phases, with more detailed stages of development within these broad periods. Different maturity phases require different GDD accumulations and Table 2
 shows an example of growing cycle requirements of a 2700 GDD corn hybrid. 

Table 2: Growing Degree Day Requirements for Different Phenology Stages of a 2700 GDD Corn Hybrid. 

	Phase
	Development Stage
	GDD

	
	Planted
	0

	
	Two leaves fully emerged
	200

	Vegetative
	Four leaves fully emerged
	345

	
	Six leaves fully emerged
	475

	
	Growing point above soil
	

	
	Eight leaves fully emerge
	610

	
	Tassel beginning to develop
	

	
	Tenth leaves fully emerged
	740

	
	Twelve leaves fully emerged
	870

	
	Ear formation
	

	
	Fourteen leaves fully emerged
	1000

	Reproductive
	Silks developing on ear
	

	
	Sixteen leaves fully emerged
	1135

	
	Tip of tassel emerging
	

	
	Silks emerging/pollen shedding
	1400

	
	Plant at full height
	

	
	Kernels in blister stage
	1660

	
	Kernels in dough stage
	1925

	
	Kernels denting
	2190

	Maturation
	Kernels dented
	2450

	
	Physiological maturity
	2700


By comparing accumulated GDD totals with previous years it can be seen if a normal amount of heat energy has been made available to a crop.  If GDDs are running behind normal, this usually means that plant development is delayed.  A late maturing crop may be at risk to frost or other adverse weather conditions if it does not reach maturity by a specific time.  For example, at 2700 GDDs dry matter is no longer being translocated to the grain, indicating that corn has reached physiological maturity and is safe from freezing conditions
; however, if the 2700 GDD limit has not been reached the crop may be susceptible to damage if frost occurs.  In general, assuming adequate moisture supplies are available, the total GDDs received by the end of the growing season are often related to crop yield, therefore GDDs can be a good index for crop production.  The cumulative temperature index can be used to establish a relationship between GDDs and production and thus ultimately with a producer’s revenues (Box 1).  

Chilling Degree Hours.  Another example of a cumulative temperature based index is chilling degree hours or units.  Although cold temperatures are often detrimental to crop production they can also been an essential requirement for certain cultivars as described by David H. Byrne and Terry Bacon, Dept. Of Horticultural Sciences, Texas A&M University, 

“Stone fruit trees such as peaches develop their vegetative and fruiting buds in the summer and, as winter approaches, the already developed buds go dormant in response to both shorter day lengths and cooler temperatures. This dormancy or sleeping stage protects these buds from oncoming cold weather. Once buds have entered dormancy, they will be tolerant to temperatures much below freezing and will not grow in response to mid-winter warm spells. These buds remain dormant until they have accumulated sufficient chilling units (CU) of cold weather. When enough chilling accumulates, the buds are ready to grow in response to warm temperatures. As long as there have been enough CUs the flower and leaf buds develop normally. If the buds do not receive sufficient chilling temperatures during winter to completely release dormancy, trees will develop one or more of the physiological symptoms associated with insufficient chilling: 1) delayed foliation, 2) reduced fruit set and increased buttoning and, 3) reduced fruit quality.”
  

There are various models used to define and calculate chilling degree units which could be used an index for a weather risk management strategy. The three most common models are: a) the number of hours during the winter period where the temperature is below 7.2 degrees Celsius; b) the number of hours where the temperature is between 0 and 7.2 degrees Celsius and; c) a model that associates varying chill units according to the actual hourly temperature, known as the Utah model
. The first two models are simple and define a chilling unit as one hour below or between certain temperatures. The Utah method is more complex because it introduces the concept of relative chilling effectiveness and negative chilling accumulation.  Average monthly temperature can also be used to estimate accumulated chilling units. 

Event Based Indices.  However, crop damage can also be the result of specific or critical temperature events that can be detrimental to yield or quality. For instance freezing conditions were reported to have caused more than $600 million in damage to the U.S. citrus crop in a single week of December 1998, with $300 million occurring in Tulare County, California, alone
. Critical temperatures causing crop damage may vary depending on the length of time that temperatures remain below freezing as well as the variety, health and development stage of a plant.  Table 3 gives approximate critical temperatures for a selection of crops
.  Preventative and proactive measures can often be taken to protect crops from such events, but these may have limited impact or become more difficult for crops that are farmed in large areas, such as cereals and grains. 

Table 3: Critical Temperatures that Result in Freeze Damage to Crops

	Critical Temperature for Freeze Damage
	Crop Example

	0 to -1 deg Celsius
	Strawberries and Raspberries (blossom and fruit), Tomatoes, Cucumbers, Melons, Peppers, Squash and Pumpkin (plants), Beans, Tobacco

	-1 to -2 deg Celsius
	Potatoes, Corn, Apples and Plums (blossom), Pears and Cherries (blossom and fruit), Beans

	-2 to -4 deg Celsius
	Apples (fruit and buds), Blueberries, Alfalfa, Pears


For example, winter wheat yields at harvest depend to a great extent on how well the plants survive the winter hibernation period.  On the territory of Kherson in Ukraine winter wheat winter crops have been known to die as a result of air and therefore soil temperatures falling below a critical level for one day or longer. These winterkill events cause damage and death of the plants’ tillering node, “[With little or no snow plants begin to die when] the daily minimum air temperature drops below –16 deg C; [a crop can be completely lost if this happens for] four days in a row or in the minimum temperature drops below –21 deg C”
.  Snow cover considerably improves conditions of winter wheat hibernation, as the difference between air and soil temperature increases from 0.5 to 1.1°С per centimeter of snow cover.  However, snow cover on the territory of Kherson is often unstable hence complete winter wheat crop failure due to winterkill is a potential risk in the southern steppe zone of Ukraine – the crop usually dies in years with no snow cover or where the stable snow cover appears late in winter, such as in 2003.  A winterkill index, based on days where the daily minimum temperature is less than -16 deg Celsius, could therefore be used by a farmer to obtain protection against such crop failure risk.  For instance, a farmer could enter into a contract where the recovery is the full value of the crop, as expected under normal weather conditions, if the recorded daily minimum air temperature is less than -16 deg Celsius for four or more consecutive days at anytime during the winter period, November to March. 

Although soil temperature is perhaps a more pertinent variable for the farmer it is not a variable that is often measured by meteorological weather stations and therefore could not be used to design a winterkill risk management solution.  Air temperature is generally recorded at the 2m level by National Meteorological Services, however a combination of air temperature and snow-cover at the nearest measuring location could be used, for example, to construct a more accurate index reflecting the winterkill risk for wheat. 

Excessive heat can also damage crop production and quality and can be a lot more difficult to control than freezing temperatures.   For example significant losses in winter wheat harvest are very likely when daily maximum air temperatures exceed +30°C (at the height of 2 m) at critical shaping and ripening stages of winter wheat kernels in late spring and early summer.  One such heat stress event can lead to up to a 4% decrease in yields at harvest time
 due to excessive drying and underdevelopment of wheat ear and kernels.

Precipitation

Precipitation, either rainfall or snowfall, can also be vital to crop growth and development.  In the example above it was clear that a snowfall has a critical role in protecting hibernating crops from the damaging effects of low air temperatures. However rainfall variability is often the most critical factor in agriculture.

Deficit Rainfall and Drought.  Meteorological drought is usually defined in terms of deviations of precipitation from normal levels and the duration of dry periods in a region.  Agricultural drought refers to situations in which moisture in the soil is no longer sufficient to meet the needs of crop growing in an area due to insufficient rainfall.  Crops, particularly rain-fed crops, often have a minimum overall threshold of cumulative rainfall for successful and healthy plant development.  For example sugar beet can consume up to 560 mm of water during the growing season, depending on plant density, soils, climate and weather conditions
.  Crops, such as spring wheat, require at least 350mm-400mm of rain for reliable yields
; for dry-land corn farming 450-500mm or more is required for high yields during the growing season
. These water requirements must be met by natural rainfall, stored soil moisture from precipitation prior to the growing season or from supplemental irrigation.  A deficit of rainfall therefore below these levels, in the absence of irrigation, can cause plant moisture stress that affects development and consequently reduces yields.  A simple cumulative rainfall index could be developed therefore to suit a grower’s specific requirements with regard to such decreases in rainfall and therefore yield. By looking at historical yield data, for example, an empirical relationship between seasonal cumulative rainfall and yield can be established.  However, the distribution of rainfall during the growing season or at specific stages of a plant’s development is often more important and customized indices must be developed to capture this risk
.  Such indices may also include other weather parameters, such as temperature and relative humidity. 

A good index must account for the susceptibility of crops to moisture stress during the different stages of development, taking into account the biological and physiological characteristics of the crop and the properties of the soil. Although actual soil moisture – the amount of water present in the soil that is available for plant uptake – is not in general an observed variable at meteorological weather stations, given knowledge of the crop and soil type, rainfall and temperature data can be used to create objective indicators to capture drought risk during the various stages of a plant’s development.  Crop growth models or historical yield data can be used to infer the empirical relationship between rainfall amounts and yield/quality for specific soil and crop types.  

For example, it is known that winter wheat yields can be strongly influenced by plant moisture stress during the leaf-tube formation to milking stages of development.  Crop growth model results for the territory of Kherson, Ukraine, show how wheat yields vary as a function of deviations in cumulative rainfall and average air temperature from normal levels during this period, assuming average weather conditions for the rest of the growing season in the region (Table 4)
:

Table 4: Deviations in Average Temperature and Cumulative Rainfall for 15 April - 14 June and their Impact on Winter Wheat Yields in Kherson

	Deviation in Average Temperature Taverage from Normal (deg C)
	Deviation in Cumulative Rainfall CR from Normal (%)
	Decrease in Winter Wheat Yield at Harvest

	0 < Taverage – Tnormal < 1
	(CRnormal – CR)/CR < 50%
	20%

	1 < Taverage – Tnormal < 3
	60% < (CRnormal – CR)/CR < 90%
	20%

	1 < Taverage – Tnormal < 3
	50% < (CRnormal – CR)/CR < 60%
	25%

	1 < Taverage – Tnormal < 3
	(CRnormal – CR)/CR < 50%
	30%

	Taverage – Tnormal > 3
	60% < (CRnormal – CR)/CR < 90%
	30%

	Taverage – Tnormal > 3
	50% < (CRnormal – CR)/CR < 60%
	40%

	Taverage – Tnormal > 3
	40% < (CRnormal – CR)/CR < 50%
	50%

	Taverage – Tnormal > 3
	(CRnormal – CR)/CR < 40%
	100%


In Table 4, Tnormal is defined as the 10-year average value of Taverage for Kherson weather station for the period 15 April – 14 June; CRnormal is defined as the 30-year average CR value for Kherson weather station for the period 15 April – 14 June. A grower could therefore protect himself from moisture stress risk on his winter wheat crop by purchasing a weather contract whose payout characteristics reflected the expected yield losses estimated by the model results in Table 4.

General indices, such as the Palmer Drought Severity Index (PDSI)
, have also become widely used drought assessment tools; the U.S. federal government and many U.S. state governments rely on the PDSI to trigger drought relief programs. The PDSI is based on more than just rainfall and uses temperature, latitude, available water holding capacity of the soil as well as precipitation to infer the supply and demand of the soil moisture at a location on a weekly basis throughout a growing season.  The value of the PDSI is reflective of the how the soil moisture, excess or deficit, compares with normal conditions. Such an index could be used as a general indicator of the severity of weather and therefore growing conditions for the local area, rather than for a specific crop.

Excess Rainfall.  Excessive moisture conditions, however, can also retard growth and affect the yield and quality of a harvest.  Excess precipitation can cause flooding and water-logging of the soil, which can restrict oxygen supply to root systems, reduce nutrient uptake, lead to nitrate leaching and an increase in the incidence of plant disease and pests
.  The effects are worse when combined with warmer than average temperatures which encourage pest development; warm water also contains less dissolved oxygen than cold water. Precipitation can impact the time and effectiveness of farming operations such as sowing, land preparation and pesticide and fertilizer applications.  Excessive rainfall at harvest time can also delay harvest and/or spoil standing crops.  Daily rainfall amounts in excess of 4 mm
 can make harvesting impossible – a grower could purchase weather protection for such an event(s) that would cover the associated financial cost of a harvest delay.
Quantifying the Risk

Once the index has been identified, it must be calibrated to capture the financial impact of the specified weather exposure as measured by the index.  There can be two approaches to this stage: identifying the financial exposure per unit of the defined index and/or establishing the limit, the total financial protection required per risk period, i.e. the maximum payout necessary in a worst-case scenario.  The approach that is chosen depends on the nature of the underlying index and weather event.  For example if the weather exposure is event driven, such as a Category 5 hurricane hitting a particular location or a cold winterkill event destroying an entire wheat crop, the latter approach is more appropriate.  If the weather exposure is of a cumulative nature, such as drought or Growing Degree Days, the former approach should be chosen.  However, taking into consideration the maximum protection required per risk period can also inform the financial exposure per unit index.

Unit Exposure.  Once weather indices to capture the impact of adverse weather conditions on a specific crop’s yield have been developed it is straightforward to calculate the financial impact of these events for producers.  In designing the index expert scientific agro-meteorological assessments, either in conjunction with crop model output or with verification using historical yields, have been employed to construct an underlying index that best proxies the weather sensitivity of the crop in question (e.g. Box 1).  Having identified the index, the crop yield, Y, or volume, V, variability per unit of the defined index, I, can be defined i.e.

(Y = (V / H = a(I) (I

(2)

where a(I) is some function of I that relates the index to the yield Y; and H is the planting area of the crop. In order to calibrate an appropriate weather contract the variation in crop yield must now be converted into a financial equivalent that mirrors the producer’s exposure. This can be done, for example, by considering a producer’s production and input costs per hectare planted or by considering his expected revenue from the sale of the crop at harvest. Producers with fixed-price delivery contracts or those that use price risk management instruments to protect themselves from market fluctuations in the price of their crop at harvest time know the financial value of each kilogram or metric tonne they produce and hence can quantify the financial cost of a shortfall in production.  For example, if a grain producer knows he will receive $X per metric tonne of crop, the following relationship must hold for his change in revenue:
( Revenue = X * ( Actual Yield – Expected Yield ) * H = X * (V = X * H * a(I) * (I

(3)

A good weather hedge must offset the negative ( Revenue fluctuation in the event of a drop in yield from budgeted levels if a producer is to protect his earnings.  In order to perfectly replicate his position, the farmer could enter into a weather contract with the following incremental payout P per unit index

(P = - X * H * a(I) * (I
(4)

Therefore his overall position would be:

( Revenue  + (P = X * ( Y * H  -  X * H * a(I) * (I = 0

(5)

Producers may have contractual obligations to deliver a pre-defined amount of their farmed product to a buyer at harvest time, with associated penalties if these obligations are not met.  In such a situation it would be straightforward to quantify and structure a hedging product to protect a producer from these contractual costs in the event of a weather-related shortfall in production (Box 2).  

Often before a growing season, however, growers are uncertain as to the price X at which they can sell their crop after harvest, rendering the quantification of risk more uncertain.  Furthermore, commodity prices also often vary in response to extreme production shocks and it is often difficult to quantify the production (weather)-price correlation, particularly in emerging commodity markets where prices are not always stable.  However estimates for the harvest-time price can be made e.g. the futures price for harvest delivery contracts trading on a local commodities exchange, last year’s harvest-price or the five-year average sales price could be used as a best estimate.  Furthermore historical sales price, marketing and production data can be used to quantify the index-value interaction capturing the financial exposure of a producer. By performing, for example, a linear regression on historical commodity prices and farm production data, a producer can quantify how a variation in index and therefore yield has related to a variation in sales price of the commodity in the past to estimate a value of X for the future.  Such an approach can also be used by an agrochemical producer to find the relationship between the historical values of an index designed to capture the development of a pest and the historical sales of pesticides, in order to quantify a hedge to protect against reduced sales arising from weather conditions that decrease pest development.

The Limit.  Most weather contracts have a limit, which corresponds to the maximum financial payout or recovery from the contract in a worst-case scenario, such as a complete crop failure.  The maximum payout can be set by either considering the value-at-risk for the producer in the event of a total crop failure or by looking at historical index, production and sales data to find the worse-case scenario historically in order to establish a limit.  Alternatively a producer may simply want to insure his production and input costs in order to recover these outlays if the crop fails.  If a producer’s production costs are $Z per hectare farmed, $Z will therefore correspond to the maximum payout, the limit of the weather contract, for each hectare the producer wishes to insure.    The unit exposure P will therefore be:

(P = ( - (Y / Expected Yield ) * Z = ( - a(I) (I / Expected Yield ) * Z, for (Y < 0
(6)

Structuring The Product

i. Structure Type

Once the index has been identified and calibrated, the next step is to structure a contract that pays when the specified adverse weather occurs in order to perform a hedging or risk smoothing function for an agricultural grower or producer.  Derivative and insurance products form the mainstay of the weather risk management market.  While the two instruments feature different regulatory, accounting, tax and legal issues (see below, Section 2), the risk transfer characteristics and benefits are often the same.  One of the drivers of market growth has been the flexibility between both instruments and the possibility to tailor risk management solutions to a client’s needs
.  A risk management product can be:

· A traditional insurance-style product – that is risk transfer that results in downside protection in exchange for a premium, e.g. a call or put option structure; 

· A risk-exchange derivative-based product – that is giving away upside in good years or seasons to finance downside protection, e.g. a collar or swap structure;

· A risk-financing product to smooth risk over a longer time horizon – that is using future income potential to guarantee the repayment for an insurance payout in the event of a bad year, e.g. a finite risk program.

Call and Put Options

A call option gives the buyer of the option the right, but not the obligation, to buy the underlying index at a pre-defined level at the maturity, or end date, of the contract
. In exchange for this right the buyer pays a premium to the seller.  Similarly a put option gives the buyer the right, but not the obligation, to sell the underlying index at a pre-defined level at contract maturity; in exchange for this right the buyer of the option pays a premium to the seller.  Every option contract, and most weather contracts in general, are defined by a set of standard specifications including: 

1. The reference index, I, and weather station(s) – complete specification of the index and data used to construct it;

2. The term, T – the risk protection period of the contract, including the start and end date of the contract;

3. A strike, K – also known as an attachment level, the level at which the weather protection begins; 

4. The payout rate, X – the financial compensation per unit index deviation above (call) or below (put) the strike at maturity, defined as the unit exposure in the previous Section; 

5. The limit, M – the maximum payout per risk protection period.

The payout, Pcall, of a call option can be defined by the following equation:

Pcall = min( max( 0, I – K )*X , M )
(7)

The payout, Pput, of a put option can be defined as:

Pput = min( max( 0, K - I )*X , M )
(8)
The type of option purchased depends on the risk profile of the buyer.  For example, assume a winter wheat grower loses 4% of his expected yield every day the maximum daily temperature is above 30 degrees Celsius in the months of May and June, incurring a cost of €16 per hectare of wheat cultivated every day the 30 degrees Celsius threshold is exceeded.  The grower has 10,000 hectares of wheat under cultivation and is prepared to accept yield loses due to heat stress of up to €480,000, but wants protection for any loses in excess of that amount.  In this case, the grower may consider purchasing a call option, either in derivative or insurance form, with the following specifications:


Reference Weather Station (RWS):   Growerstown, ID No. 12345


Index:




Daily Tmax > 30 C, measured at RWS


Calculation Period:


1st May 2005 – 30th June 2005 (inclusive)


Call Strike:



3 events


Payout Rate:



€160,000 per event above the strike


Limit:




€1,600,000

For securing such protection the grower is required to pay a premium, but it allows the grower to recover €160,000 for each day in May and June that the daily maximum temperature exceeds 30 degrees Celsius in excess of the strike level. Figure 5 illustrates the impact of such hedging strategy on the revenues of the grower – his downside exposure is now limited to €480,000 by purchasing the call option, unless the number of heat events exceeds an unprecedented 13 during the calculation period.   Modifications can obviously made to this simplified example to better replicate the exposure of the grower – a more sophisticated product may be, for instance, based on an index that considers only consecutive days of excessive temperature, includes relative humidity or a non-linear payout rate that increases the compensation as the number of heat events during the calculation period increases.  Alternatively the grower many want to purchase a digital call option, an all-or-nothing structure, that will pay the grower a lump sum, rather than incremental payout, if the heat stress reaches a critical level at which most of the crop will be lost. An example of a put option application is given in Box 3.










Collar

A business may be averse to paying an upfront premium for risk protection.  An alternative it can consider is to enter into a contract where the business receives downside protection in return for sacrificing upside revenue in the event of weather that is beneficial for the business.  In essence the business can forego a proportion of profit to offset the cost of reduced revenues.  It can do this by selling a put option and then buying a call option from the provider, or vice versa.  A collar therefore combines both a call and put option, but does not involve an exchange of premium from the end user to the provider.  Rather a collar is a means by which two parties can exchange risk, hence collars may often be structured with asymmetric call and put options in order to make the risk exchange of equal value to both parties.  This approach may not be applicable to all weather risk management problems in agriculture.  Furthermore, businesses may be averse to giving up profits in a good year.  However, a very simple example of a possible application can be found by considering a local agrochemical company whose sales of a particular pesticide vary depending on the number of pest growing degree days (PGDDs) recorded in their sales region during the winter.  When the recorded PGDDs are high, pest attack incidents increase and pesticide sales increase accordingly.  When PGDDs are low demand for their product drops and pesticide sales are low.  The company has quantified this risk and finds that on average it loses or gains $12,000 per PGDD from their budgeted revenues, if the accumulated PGDD are below or above the 1700 PGDDs expected in a normal winter the region.  The company may be interested in a collar, as not only is it costless to enter into a collar agreement, but it also reduces the company’s revenue volatility caused by weather.  In this case, the company may consider purchasing a collar with the following specifications:


Reference Weather Station (RWS):   Growerstown, ID No. 12345


Index:




Cumulative PGDDs measured at RWS 


Calculation Period:


1st November 2005 – 31st March 2006 (inc) 


Call Strike:



1800 PGDDs


Put Strike:



1600 PGDDs


Payout Rate:



$12,000 per PGDD above/below strikes


Limit:




$2,400,000 

The historical distribution of November-March PGDDs in Growerstown is found to be symmetric around the 1700 PGDD average with a standard deviation of 100 PGDDs, hence the call and put options have strikes equidistant of the average to create a zero-cost collar. Figure 6 illustrates the impact of such hedging strategy on the revenues of the company – the collar reduces a potential two standard deviation fluctuation in revenues for the company from +/- $2,400,000 to +/- $1,200,000.

Swap

A swap is a contract in which a buyer makes a payment to the seller when a weather index rises above a pre-defined strike level and entitles the buyer to receive a payment from the seller when the index falls below the same level.  Essentially a swap is a put and a call option with the same strike, payment rate and limit, which, like a collar, is costless to enter.  In the example above, instead of using a collar contract the local agrochemical company could “sell” a swap contract to a provider with a strike of 1700 PGDDs and a payout rate of  $12,000 per PGDD.  This would ensure that the business achieves no more or less than its budgeted revenue.  Swaps are derivative over-the-counter (OTC) contracts that are commonly traded in the secondary derivative weather risk market and, outside the energy industry, are not often used by end users as they do not always offer the best correlation to the underlying risk.  Swaps are only available in derivative form
.

Exotic Structures

In theory a weather risk management solution can take any form or combination of options, swaps, triggers and indices.  Possible exotic combinations include: knock-in or knock-out options, which grant the buyer a standard call or put option if a particular knock-in or knock-out threshold is breached, either on the same or even a different index – for example a heat stress call option for wheat, that is only triggered if precipitation during the same calculation period drops below a critical level; compound options, known as “an option on an option”, that grants the buyer to right to purchase an underlying option at some future date – for example a multi-year structure that gives the buyer an option to buy an option on the weather conditions for the next growing season at the end of the current season; structures with a variable start date depending on the timing of a pre-specified event – such a structure may be appropriate for crops with variable planting dates that can be associated with cumulative rainfall or growing degree day totals.  

Reference indices may also include non-weather variables.  For example, temperature contingent commodity call options that give a purchaser the right but not an obligation to buy an underlying commodity as a pre-specified price and volume only if certain temperature, i.e. growing conditions, have been met.  Such exotic structures could potentially provide total revenue insurance for agricultural producers whose revenues depend on both the price at which they sell their produce and the volume that they produce.  Such contracts exist and are traded in the OTC energy derivative markets.

Finite Risk Solutions

Finite risk products are becoming another accepted risk management mechanism, often popular with corporate end users. Finite risk solutions seek to spread the risks for an insurance policyholder over time and shift the main value proposition from traditional risk transfer towards risk financing for the client. Products are designed specifically to the needs of the customers, and in contrast to traditional annual-renewal insurance policies, they are typically multi-year contracts that smooth the year-to-year volatility of insurance claims and premium payments – and consequently earnings – over a long time horizon therefore limiting the overall risk transfer during the contract period.  Finite risk programs involve either pre-funded (prospective) structures – where the client pays an annual or single premiums into a fund account that earns a contractually agreed investment return; these funds are then used to make loss payments to the customer – or post-funded (retrospective) structures, where the client pays back the claims payments of the insurer over a defined period of time.  Such a risk management mechanism can also be used to finance weather risk.
Exchange Traded Products
The Chicago Mercantile Exchange (CME) lists weather futures and options on futures, with over $1.6 billion dollars of trading notional value in 2003
.  These are standardized exchange-traded derivatives reflect monthly and seasonal temperatures of 15 U.S. cities, five European cities and two Japanese cities, measured according to specific indices and weather stations. The contracts are specifically tailored for the energy industry.  Weather contracts for winter months are classified according to an index of cumulative Heating Degree Day (HDD)
 values, days in which energy is used for heating.  Weather contracts for summer months in the U.S. are classified according to an index of cumulative Cooling Degree Day (CDD)
 values, days in which energy is used for air conditioning, and in Europe according to an index of cumulative average temperature.  All futures and option contracts on the CME can be bought and sold through an exchange broker, with terms and conditions set forth in agreements provided by the CME.  However, due to the standardized nature of the contract they may have limited appeal to the agricultural industry.  


ii. Risk Retention and Premium

It is clear that an important aspect to consider when structuring an index-based solution is the retention of risk by the party seeking protection, this means defining the index trigger level where the weather protection begins. The strike determines the level of risk retention of the insured party and is the key to pricing and success in transferring the risk.  A strike very close to the mean of the index indicates a low level of risk retention by the end user and a contract that will pay out with high probability.  This implicitly means a large premium, as well as the possibility of inspiring little interest from the weather market if the location or nature of the risk is outside the main liquid trading hubs or variables.  A strike further away from the mean reduces the probability of a payout and hence the premium of the contract as the entity is retaining the more frequent, near-the-mean, risk internally and transferring less to the market.  The level of risk retention will depend on the risk appetite and business imperatives of the end user in question and its sensitivity to the premium associated with entering into a contract. For instance, to reduce the premium payment the wheat grower in the call option example above could increase the strike for heat stress events.  By retaining more risk, all things being equal, it would reduce the premium of the contract.  Alternatively the grower could reduce the payment rate to partially, instead of fully, hedge its exposure.   Premium payment terms must be defined before entering a weather contract and an overview of how such contracts are priced by weather market providers is given in the following Section.

Execution

i. The Market Providers

The main providers of risk capacity, product structuring and/or pricing for end user customers in the current weather risk market can be categorized into three main groups:

· Insurance and reinsurance companies, who see non-catastrophic weather insurance as a natural extension to their traditional business and given analysis capabilities.  Examples include: ACE, AXA, Munich Re, Partner Re, Swiss Re, Tokio Marine and Fire Insurance, XL Capital.  Most of these entities can also offer derivative products and, although some many choose to retain the risk by dealing in a large amount of diversified end user business, several are some of the most active portfolio managers in the secondary market, using financial derivatives contracts to manage their weather risk portfolios, of both high and low frequency risk;

· Banks, who structure weather risk solutions to fit the needs of their clients.  Examples include: ABN AMRO, Calyon, Deutsche Bank, Goldman Sachs, Merrill Lynch, Rabo Bank.  Banks have a large potential client base for weather derivative products and may find many marketing and cross-selling opportunities in many different sectors of business.  Banks generally do not have as much risk capacity as the (re)insurers, often passing positions of their end user customers to other market providers or actively hedging positions in the secondary OTC and exchange-traded derivatives market;

· Specialized hybrid companies or funds such as Coriolis Capital (formerly Société Générale) and Guaranteed Weather Trading Ltd., have been established specifically to trade and invest in weather risk.  Such hybrid entities are able to deal in weather derivatives and reinsurance and offer weather risk solution products to customers;

Brokers, who facilitate transactions between buyers and sellers of weather protection, are an independent point of contact for customers seeking a counterparty in the weather market.  A broker’s role is to allow for price discovery while ensuring confidentiality until final negotiations are concluded.  Brokers have in-depth knowledge of the market with some offering risk solution structuring services.  Derivative brokers, dealing primarily with the secondary OTC and exchange-traded market include: Tradition Financial Services (TFS), Intercapital (ICAP), GFI and Evolution.  Insurance brokers, that provide weather insurance broking services, include Marsh, Aon and Willis Group.

The energy companies responsible for the birth of the marketplace, Enron, Aquila, Southern Company and Entergy Koch (now Merrill Lynch) are no longer active in the weather market.  Although the market is still predominantly driven by energy related weather risk – with energy companies and several bank’s hedging their energy portfolios with weather derivatives – the major source of secondary market liquidity is now driven by the three predominant types of counter-party outlined above, either through the hedging of end user deals or taking speculative positions.


ii. Regulatory Issues

Depending on the jurisdiction, weather risk management products can be classified as either financial (derivative), insurance or gaming contracts.  Depending on their classification, these contracts are subject to specific tax and accounting treatments, which can render one form more optimal than another for an end user’s purposes and business.  Interested parties are strongly advised to contact their local financial services authority, insurance regulator or a professional specializing in insurance law to find out how weather contracts are treated in their jurisdiction and the legal and financial implications associated with each.   

In Europe, individual countries currently have their own regulatory standpoint.  In the U.K., for example, OTC weather derivatives are considered to be investment or financial contracts, “contracts for differences”, and are therefore regulated by the U.K. Financial Services Authority along with other financial contracts.  Entities trading in weather derivatives must either be licensed or authorized to trade derivative contracts or be exempt from obtaining a license, such as end users or those dealing in weather mitigation products on their own account
.  The ISDA Master Agreement
 confirmations and credit support provisions are used for the documentation for OTC weather derivatives in the U.K. and various countries in Continental Europe have also adopted this documentation
.  Germany, France and The Netherlands have a similar regulatory approach as the U.K.; in other European countries the classification of such contracts has not yet been clarified, e.g. Italy.
However, the new EU Investment Services Directive (ISD2) on financial instruments markets may bring weather derivatives into the regulatory framework that applies to other derivative contracts and give a EU-wide “passport” for trading OTC weather derivatives
.  Member states have until early 2007 to bring their national laws and regulations into line with the new rules.  However, they will not be able to finalize their national implementation programmes until the European Commission conclude their discussions, including if weather derivatives should be treated as financial instruments subject to the Directive or as an asset class outside the scope of regulation.  If the Directive is extended to cover weather derivatives, then member states will be required to adjust and apply their licensing and other financial regulatory rules accordingly.  The proposal to extend the scope of regulation to cover weather derivatives will have several benefits and disadvantages for market participants
, however there are some exemptions included in the Directive.  In particular, for market players that currently can operate without a financial services license, such as end users of weather derivatives products.

In the U.S., OTC weather derivatives are also treated as financial contracts, and most market participants use an ISDA Master Agreement to document their weather derivative transactions, although weather derivatives are excluded from the regulatory scope of the Commodity Exchange Act
; exchange-traded contracts are regulated by the Commodity Futures Trading Commission
.  

If a company wishes to purchase weather insurance to mitigate its weather risk, it must do so from an insurance provider licensed in its jurisdiction, who in turn must draft an insurance policy that must meet the definitions of “insurance” in the jurisdiction where the policy is to be written.  In comparison to financial contracts, insurance is highly regulated and must comply with strict criteria.  Regulators define the elements of an insurance policy to ensure supervision and compliance with the law.  While definitions vary from jurisdiction to jurisdiction, the following six common elements can be extracted
:

1. The process of insurance involves a contract between two parties, which runs for a specified term of “cover”.

2. Under the terms of this contract, one party (the “insurer”) must promise to pay a sum of money or provide a corresponding benefit to the other (the “insured”), should a specified future contingent event occur during the term of cover of the contract.

3. The insured must make a payment of money or money’s worth – the premium, in a lump sum or installments – to the insurer in consideration of the insurer’s promise of the point above. 

4. There must be uncertainty as to the occurrence or the timing of the specified future contingent event.

5. There must be an “insurable interest” for the insured party.  In other words, the insured must have an economic interest in the subject matter of the contract and have an interest in the subject matter that is lawful. 

6. The insured must suffer a loss of a financial nature in relation to his insurable interest and the amount payable must be a reasonable recovery for the loss experienced. 
To further illustrate point 6, the Weather Risk Management Association writes
,

“In many cases the amount payable by the [insurer] may be quantified by the actual financial loss suffered by the insured if the specified uncertain future event occurs and causes damage to the subject matter of the contract; this is in the nature of an indemnity. However, the amount payable by the [insurer] may also be predetermined and may be more or less than the loss suffered by the insured. That said, these “valued” policies or those that have fixed or formulaic payments are employed in order to expedite the claim settlement process. Whilst they do not provide a full correlation between the loss suffered by the insured and the amount paid by the insurer, the sums are not entirely unconnected. In these contracts, the amount payable upon a contingency must represent a genuine attempt to pre-estimate, or reflect, the loss that the insured might be expected to suffer, should the contingency occur. The amount payable cannot be wildly divergent from the loss experienced. The essential feature of this element of insurance remains that the insured does suffer a loss.”

Although a weather derivative is consistent with point 1 and may share – although does not have to – some similarities with points 2-4 above, such an instrument does not need by law to exhibit any elements of insurance outlined by points 5 and 6. For example, the New York State Insurance Department based its conclusion that a weather derivative is not insurance by noting, "the issuer is obligated to pay the purchaser whether or not that purchaser suffers a loss. Neither the amount of the payment nor the trigger itself in the weather derivative bears a relationship to the purchaser's loss. Absent such obligations, the instrument is not an insurance contract.”

In the context of agriculture, the elements of weather insurance are therefore that the insured party must have an insurable interest, needs to suffer a loss in respect of that interest and the insurance payment must indemnify the insured party for the loss.  For example, if a grower wants to purchase weather insurance for his wheat crop, he must: a) be growing wheat; b) purchase an insurance contract based on an index that correlates closely to his wheat yield; and c) purchase insurance whose payout is related to the actual financial loss experienced.  For instance the grower cannot buy insurance for more hectares of wheat than the number of hectares he is currently farming, nor can he purchase a contract where the sum insured (the limit) or the payout rate exceeds a reasonable value for the crop – for example, he cannot buy insurance with a limit of $10,000 per hectare when a reasonable estimate of the value of the crop, under current market prices or contractual obligations, is $1,000 per hectare. An end user and the insurer must be clear that the contract into which they enter satisfies the elements of insurance outlined by their jurisdiction, either by conducting a correlation analysis between the end user’s economics and variations in the weather in the application process and/or requiring the insured party to represent and warrant in the claim form that the recovery is a reasonable estimate of economic loss.  In jurisdictions where weather risk protection can be obtained in both insurance and derivative form, such as in the U.S. or the U.K., these contracts are subject to distinct tax and accounting treatments.

Box 1: The Corn Grower’s Weather Hedge 

A corn grower is worried about his corn production.  He has a 3700-acre dry-land farm and is worried that the growing degree accumulation for the coming growing season will not be enough to ensure a good harvest.  The grower is one of the few corn producers in the region and he has just won a contract to deliver 500,000 bushels of corn to a local buyer at harvest.  However there are penalties in the contract associated with under-delivery.  The grower remembers 2000 was a cool summer when his farm yields were low and he is worried that this summer will be the same.  He has read about weather derivatives and is interested to see if a weather derivative contract could adequately protect him against this risk.

The grower grows a corn hybrid that needs 2500 GDDs to mature and assure a maximum yield and quality harvest.  He knows from the seed company where he purchases the seed that his particular hybrid’s maturity is rated using modified growing degree days (MGDDs) defined as:
Daily MGDD = max(0, [ (max(0, 30 - Tmax) + max(0, Tmin - 10) ] / 2 – 10 )

where Tmax and Tmin are the daily maximum and minimum temperature measured in degree Celsius for each day during the growing season.  The grower has a weather station on his farm, which he installed a year ago, but he knows there is an official National Meteorological Service (NMS) weather station in the local airport 10km away. The grower purchases 30 years of daily maximum and minimum temperatures from the local NMS office.  He compares the past year of data from the NWS station with the data he has been collecting on his farm for the past year and he finds that the daily minimum and maximum temperatures correlate highly with a correlation coefficient of 98% and an average difference in temperatures of 0.3 deg Celsius.  He is happy that the NWS represents the weather on his farm well.  The grower has seven years of historical corn yield data from his farm.  He wants to analyze this data further, so he contacts the local Agricultural University in a nearby town to asks if they would be willing to give him some technical assistance and analysis advice.  A postgraduate student who is studying arable farming is interested in the project and agrees to help.   

The grower has always grown the same hybrid.  He knows from experience that the optimal planting date for corn in his region is May 6th, that the hybrid corn he grows takes approximately 110-130 days to mature and that he usually harvests his crop in the first week of September. He knows during the later half of September and early October the probability of frost in his region begins to increases, therefore he knows he always wants to harvest before October. Using this information the postgraduate calculates the cumulative MGDDs, as defined by the equation the grower has from the seed company, for May 6th – September 15th, for the past seven years from the NMS data and compares them to the historical yield data for the farm. He makes a table and plots the results.

Table A:  Corn Grower’s Historical Farm Yields versus Cumulative MGDDs

	Year
	Farm Yield (bu/acre)
	MGDDs

(May 6th – September 15th)

	1998
	106.6
	2551

	1999
	184.2
	2651

	2000
	58.9
	2249

	2001
	206.6
	2602

	2002
	128.3
	2399

	2003
	234.8
	2649

	2004
	194.9
	2550


He finds that there is a strong relationship between the accumulated MGDDs at the local NMS station and his farm yield.  The correlation coefficient, r, between the interannual variations in MGDDs and the interannual variations in yield is 85%, i.e. the variation in the MGDDs explains nearly 73% of the total interannual variability of corn yield on the grower’s farm.   From the plot (Figure A) he can see that there is a linear relationship between cumulative MGDDs and yield.  He performs a least squares regression on the data to find the best-fit line, given by:

Corn Yield (bu/acre) = 0.365*MGDD – 761.1
(a)

with a r2 of 72.7%.  He can see that that linear relationship captures the grower’s worst year, 2000, when the accumulated MGDDs were 2249 and his average yield was only 58.9 bu/acre.  However he notices that fit is not perfect – 1998 is an outlying year.  The accumulated MGDDs in 1998 were 2551, as in 2004, but his yield was nearly 50% less.  The postgraduate asks the grower about this.  The grower tells the postgraduate that 1998 was the first year in which his farm was in operation.  Normally rainfall in his region is plentiful for dry-land farming of corn, with over 500 mm of rainfall on average during the growing season.  However he remembers 1998 was an extremely dry year and, being a new grower, he knew that in that particular year he hadn’t appropriately reduced his seeding and fertilizer rates to accommodate the low levels of soil moisture in his fields prior to the growing season.  However he knows that this year the stored soil moisture on his land is adequate to for good crop development.  Using this new information the postgraduate decides to remove 1998 from his regression and finds the new relationship between corn yield and cumulative MGDDs to be:

Corn Yield (bu/hct) = 0.38*MGDD – 791.8
(b)

with a r2 of 91.3%.  The postgraduate is now confident that MDGGs are a good index for corn production on the grower’s farm.

Figure A: Historical Modified Growing Degree Days vs. Grower’s Corn Yield
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Box 2: The Corn Grower’s Weather Hedge 

The grower is one of the few corn producers in the region and he has just won a contract to deliver 500,000 bushels of corn to a local buyer at harvest.  However there are penalties in the contract associated with under-delivery.  In the contract the buyer has specified that the grower will receive $3 per bushel for the 500,000 bushels he is contracted to deliver, however the contract also stipulates that the grower will pay a penalty of $1 for every bushel under 500,000 that he fails to deliver.  The grower is extremely happy with his contract.  He knows on can average he can expect to make $2.5 per bushel for his production by selling outside of his area, so $3 per bushel is a very good price for the grower as it does not include transportation costs.  Additionally he also knows that he can sell his excess production, if any, at $2.5 per bushel.  However he is concerned about the $1 per bushel penalty so he makes a table of his overall revenue with and without the supply contract given different farm production scenarios.

Table B: Farm Revenue under Different Total Production Scenarios

	Total Farm Production (bushels)
	Revenue with 500,000 bu Supply Contract  ($)
	Revenue without 500,000 bu Supply Contract ($)

	800,000
	2,250,000
	2,000,000

	700,000
	2,000,000
	1,750,000

	600,000
	1,750,000
	1,500,000

	500,000
	1,500,000
	1,250,000

	400,000
	900,000
	1,000,000

	300,000
	550,000
	750,000

	200,000
	200,000
	500,000


He is interested in purchasing a weather contract that duplicates the terms of his underlying corn supply contract so that in years where his production falls below the 500,000 bushel threshold he does not make less money than he would expect to make if he simply sold his produce outside of the region at $2.5 per bushel.  

He can see that every 100,000 bushels below the 500,000 bushel threshold corresponds to a loss in revenue of $100,000.  The grower would like to enter a contract that financially compensates him for such a loss in case there is a weather-related shortfall in production on his farm.  The grower uses the postgraduate’s equation (b) to convert the total farm production in bushels to an equivalent cumulative MGDD: 

MGDD = (Total Production / 3700 + 791.8)/0.38
(c)

He finds that 2436.5 MGDDs corresponds to 500,000 bushels of farm production according to the equation. For total farm production less than 500,000 he makes a net loss in revenue of $1 for each bushel less than the 500,000 bushel threshold, i.e.

Δ MGDD = ( $1 / 3700 ) / 0.38 = 0.00071
(d)

Therefore for every MGDD less than 2436.5 MGDDs from the May 6th – September 15th he calculates that he can expect to lose $1,410 per MGDD in revenue.

Table C:  Total Farm Production and Required MGDDs

	Total Farm Production (bushels)
	Required MGDDs
	Loss in Expected Revenue Associated with Entering Supply Contract ($)

	800,000
	2649.3
	0

	700,000
	2578.4
	0

	600,000
	2507.4
	0

	500,000
	2436.5
	0

	400,000
	2365.6
	-100,000

	300,000
	2294.7
	-200,000

	200,000
	2223.8
	-300,000

	100,000
	2152.8
	-400,000


Box 3: The Corn Grower’s Weather Hedge

Having quantified his financial exposure as $1,410 per MGDD in the event of a cool summer, the corn grower decides that he should purchase a weather derivative contract that pays out when MGDDs accumulated at his local National Meteorological Service (NMS) weather station at Corntown Airport are low.  In particular, given his analysis, he wants to protection against years where the cumulative MGDDs, from May 6th – September 15th, are less than 2436.  He decides a put-option structure is the best way manage this risk and he develops a prototype weather contract with the following specifications:

Reference Weather Station (RWS):   
Corntown, ID No. 56789


Index:




Cumulative MGDDs


Calculation Period:


6th May 2005 – 15th September 2005 (inc)


Put Strike:



2436


Payout Rate:



$1,410 per MGDD below the strike


Limit:




$400,000

The grower contacts his local derivatives broker to see whether the broker can get him a quote for the prototype contract he has developed.

3. Valuing Weather Risk
Pricing Overview

The premium of an index-based weather contract is determined actuarially, that is by conducting a rigorous analysis of the historical weather in order to understand the statistical properties and distribution of the defined weather index and therefore the payouts of the insurance or derivative contract.  Such an analysis includes: a) cleaning and quality controlling the data, i.e. using statistical methods to in-fill missing data and/or to account for significant changes, if any, as a result of instrumentation or station location changes; b) checking the cleaned data for significant trends and detrending to current levels if appropriate – this is particularly pertinent for temperature data which, in general, exhibits a strong warming trend in the Northern Hemisphere and; c) performing a statistical analysis on the cleaned and detrended data and/or a Monte Carlo simulation, using a model calibrated by the data, to determine the distribution of the defined weather index and therefore payouts of the contract.  By determining the frequency and severity of weather events specified by the index an appropriate premium can be calculated.  

It should be noted that the premium charged by the providers in the weather market may depend on several factors, not all as objective as the underlying statistical analysis of the weather data. Institutions charge different risk margins, or discounts, over the expected value or fair price to potential buyers; these choices are driven by the risk appetite, business imperatives and operational costs of the provider
. An overview of pricing is given in this Section and the implications of the premium charged for the end user will also be discussed.  The data issues associated with points a) and b) will be covered in Section 4. 

i. Expected Loss and Risk Margin

To illustrate the pricing process let us consider an index-based weather contract structured as a call option (Section 2).  The payout, P, of the contract is determined by the following equation:

P = min( max( 0, I – K )*X , M )
(9)

where K is the strike, I is the index measured during the calculation period, X is the payout rate per unit index and M is the limit of the contract. To calculate the premium for the contract one must determine the following parameters:

1. The expected loss of the contract, E(P), i.e. the average or expected payout of the structure each year;

2. The standard deviation of the payouts of the contract, ((P), i.e. a measure of the variability of the contract payouts;

3. The xth-percentile of the payouts, i.e. a measure of the value-at-risk (VaR) of the contract for the seller, VaRX(P).  For example, the 99% VaR represents the economic loss for the provider that is expected to be exceeded with 1% probability at the end of the calculation period of the contract.

These three parameters quantify the expected (1) and variable or risky (2, 3) payouts of the contract and must be determined from the historical weather data, either by using the historical index values from the available cleaned and detrended dataset or by using the data to calibrate a Monte Carlo simulation model to generate thousands of possible realizations of I in order to fill-out the distribution of payouts and to determine better estimates of E(P), ((P) and VaR99(P).  A complete description of the various methods for determining these payout statistics are beyond the scope of this Chapter, but an overview of possible approaches is given in the following subsection.  It is clear however that E(P), ((P) and VaR99(P) will vary with the strike, payout rate and limit. 

Having established values for the expected and variable payout parameters, the price of a contract is then determined by the risk preferences of the (re)insurance company or financial institution that is providing the risk protection: that is, how they measure the cost of risk with respect to return for the purposes of pricing, risk management and capital allocation
.  As a result this is the most subjective aspect to the risk pricing process as it is largely driven by the institutional constraints and risk appetite of the provider.  However it is clear that the provider will charge E(P) plus an additional risk margin for taking the weather risk from the end user, i.e.

Premium = E(P) + Risk Margin
(10)

where E(P) is the expected loss of the contract for the provider which can be mathematically expressed as:
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(11)
where n is the number of simulation trials or historical values of I used to compute the expected loss.  The risk margin can be further broken down to include the following components
:

Risk Margin = CL + EL ± CLD
(12)

CL is the capital loading which is related to the cost of risk capital needed by the provider to underwrite or sell a particular weather index contract. This loading usually includes the profit margin and is typically the predominant component of the risk margin, estimated as a function of the variability of the contract payout as measured by ((P) and/or VaRX(P).  EL is the administrative expense loading, which may include internal management expenses and taxes and/or external expenses for items such as brokerage and premium taxes.  CLD represents the commercial loading and discounts.  Whereas E(P), CL and EL are considered the technical premium, which in theory corresponds to the price that allows the provider to achieve a target return on the risk capital, CLD depends on the weather market conditions, the current portfolio position of the provider and the overall relationship with the client. For simplicity we will refer henceforth to the variation in premium from the expected loss as the risk margin.

There are many methods for measuring risk and hence determining the risk margin of a risk taker.  Two examples of simple methods that have been suggested
 for the weather market include the Sharpe Ratio and the Return on VaR methods – both measure expected excess return in terms of some measure of risk and hence determine the “cost of risk” for the contract seller:

· Sharpe Ratio, ( = [ Premium - E(P) ] / ((P)

· Premium = E(P) + ( ((P)
(13)

· Return on VaR (99%), ( = [ Premium - E(P) ] / [ VaR99(P) – E(P) ]

· Premium = E(P) + ( [ VaR99(P) – E(P) ]
(14)

The Sharpe Ratio uses standard deviation as the underlying measure of risk and therefore ( represents the “cost of standard deviation” as determined by the seller’s risk preferences.  One of the benefits relating risk with the standard deviation of payouts is that it is an easy parameter to estimate, however it is a symmetric measure of risk capturing the mean width of the payout distribution and for traditional risk exchange products the payout distribution is often not symmetric but has a long tail.  The Return on VaR method uses VaR(99%) as the underlying measure of risk and therefore ( represents the “cost of VaR”.  Value-at-Risk (VaR) is a term that has become widely used by insurers, corporate treasurers and financial institutions to summarize the total risk of portfolios.  Central bank regulators, for example, use VaR in determining the capital a bank is required to reflect the market risks it is bearing.  A VaR calculation is aimed at determining the loss that will not be exceeded as some specified confidence, often set at the 99% confidence level, over a given time horizon.
  In the context of a weather risk management product the natural time horizon to choose is the expiry date of the contract.  The advantage of VaR99 is that it is computed from the loss side of the payout distribution, where loss is defined with respect to the expected payout E(P), and therefore captures the potential financial loss to the seller.  Using the Return on VaR method is more appropriate for pricing structures that protect against low-frequency/high severity risk, that have highly asymmetric payout distributions.  However VaR99 is a harder parameter to estimate, particularly for strike levels set far away from the mean, and is usually established through Monte Carlo simulation.  The worst-case recorded historically can often be used as a cross check for VaR.  In both methods outlined above, ( and ( quantify the risk loading, given by Equation 12, appropriate for the risk preferences of the provider.

It is also worth noting that weather market participants can often enter into financial derivatives contracts to manage their weather risk portfolios and actively hedge positions in the secondary OTC and exchange-traded derivatives market.  This is particularly true if the end user risk is in a location that is included or positively correlated to the locations that are commonly traded in the market.  Moreover, even if a market provider chooses to retain the risk internally, a new potential contract may look attractive in comparison to the overall portfolio of the risk-taker, i.e. it may be a contract that, like hedging, will reduce the relative ( and VaR99 parameters and hence the overall risk position of the portfolio.  The cost of the chosen hedging strategy (if any) may affect the expected loss and the variability of payouts – as Robert Henderson
 notes, making the payout a function of the hedging strategy H, P(H) (see Market Pricing below) – hence a more general representation of the premium, given Equations 10 and 12, is
:

Premium = E(P(H)) + ( ( ((P(H), C) - ((C) )
(15)

where ((P(H), C) can be expressed as
:
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(16)
((P(H)) and ((C) are the standard deviations of the contract payout and the current portfolio position C over the same time horizon respectively; ((P(H),C) is the overall standard deviation of the new portfolio with the contract included; ρ(P(H),C) is the correlation between the contract payouts and the position of the current portfolio over the time horizon of the contract.  As the correlation can be negative or positive the new contract can decrease or increase the overall risk of the portfolio, as can the relative magnitudes of ((P(H)) and ((C), and hence reduce or increase the premium while maintaining the same cost of risk, (.  Alternatively the premium can be expressed as:

Premium = E(P(H)) + ( ( VaR99(P(H), C) - VaR99(C) - E(P(H)) )
(17)
where VaR99(P(H)) and VaR99(C) are the VaR(99%) for the contract payout and the current portfolio position C over the same time horizon respectively, and VaR99(P(H),C) is the VaR(99%) of the new portfolio with the contract included.  As VaR(99%) may express the 99% confidence level of a non-normal distribution of payouts, it is difficult to express VaR99(P(H),C) mathematically, estimates are usually taken from simulation results.  A well-diversified book of contracts will reduce the relative ( and VaR99 parameters and hence the of the overall risk position of the portfolio of a provider.  
A reasonable estimate for (, ( given prices in the weather market are ( = 15-30% and ( = 5-10%.  


ii. Approaches to Pricing Weather Risk

In order to price a weather contract given the overview above, the parameters that quantify the expected (E(P)) and variable (VaR99(P), ((P)) payouts of the contract must be determined.  This section briefly outlines four possible approaches, with varying degrees of difficulty and effort, that are commonly used by weather market participants; the first three methods are based on analysis of historical weather data and the fourth is based on prevailing market price of weather risk.  In general, providers may use several or all of these methods to crosscheck results and compute a contract price. 

Historical Burn Analysis

Historical Burn Analysis (HBA) is the simplest method of weather contract pricing. It involves taking historical values of the index, which may be based on raw, cleaned and possibly detrended weather data, and applying the contract in question to them. Assuming the data used to calculate the historical indices is of good quality for the risk analysis, HBA can give a useful and intuitive first indication of the mean and range of possible payouts of a weather contract from which parameters such as E(P) and ((P) can be calculated (Box 4).   The method is simple and can be easily done in a spreadsheet. The disadvantage of HBA is that it gives a limited view of possible index outcomes: it may not capture the possible extremes and may be overly influenced by individual years in the historical dataset. Estimates of parameters such as VaR99(P) therefore become very difficult, although the largest historical value is always a good reality check when considering the possible variability of payouts.  Additionally the confidence level that can be attached to averages and standard deviation calculated using historical data is limited by the number of years of data available.  The standard error in the average decreases as the number of years included in the average increases however, although weather stations often have 30-40 years of historical data – the representative nature of older data for today’s weather and climate should also be questioned (Section 4). 

Historical Distribution Analysis

Much can be gained in understanding the statistical properties of the underlying index.  If index values are calculated from historical meteorological data, then looking at the distribution of these index values and ascertaining the probability distribution function of the index can give a better estimate of the parameters necessary to specify that function and therefore the expected and variable payouts of the contract. Historical Distribution Analysis (HDA) involves determining the probability distribution that best fits the historical (possibly detrended) index data. The process is very much one of trial and error and various standard tests and goodness-of-fit statistics, each with their strengths and weaknesses, can be used to pick the best distribution from a potential selection, such as Quantile-Quantile plots, calculation of moments and statistical tests such as chi-squared, Kolmgorov-Smirnov, Anderson-Darling, root-mean squared error and maximum likelihood methods
.  By determining the distribution and therefore the parameters necessary to define it, such as the mean and standard deviation, the E(P) and ((P) VaR99(P) can be calculated either by simulation from the distribution (see below) or analytically, depending on the type of distribution chosen and the underlying complexity of the contract to be priced. For example in the case of a normally distributed index, closed-form expressions can be found for E(P), ((P) and VaR99(P) for simple structures such as call and put options
,
.  For a weather call option with strike K, payout rate X and limit M, the expected payout, i.e. the expected loss of the contract E(P)
, is given by: 
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where N is the cumulative normal distribution and μ and σ are the mean and standard deviation defined by the historical mean and standard deviation of the index data. The standard deviation of the contract ((P)
 is given by:
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For example, if the GDD index considered in Box 4 is normally distributed with μ = 2567 and σ = 131, taking α = 25% the premium of the call option given the closed form solution above and using Equation 13 is:

Premium = E(P) + 0.25*((P) = $15,350 +0.25*$138,895 = $50,074

Closed form solutions can also be derived for call and put options using different underlying distributions, such as the kernel density
 and Gamma distribution
.  Although the HDA method is more accurate than HBA for computing expected and variable payouts
,
, and is often simpler due to the availability of analytical formulas, it assumes the underlying distribution is a correct representation of the data.  Fitting and putting too much emphasis on a distribution that does not capture the higher moments of variability, for example, can lead to underestimate of variability and therefore premium.

Monte Carlo Simulation

Index Simulation.  Once a distribution is identified to represent an index, constraints associated with the length of the historical data record are no longer valid and thousands of realizations of the index can be simulated, to estimate the contract statistics to any arbitrary degree of statistical accuracy, by using the distribution to make Monte-Carlo simulations. The Index Simulation (IS) method is a very common method for pricing weather contracts.  Index values can be simulated statistically by drawing samples from the chosen distribution to generate large numbers (years) of artificial index values.  The weather contract structure is applied to each of these values to create a range of payout outcomes that can be used to calculate the price of the contract. The IS method is particularly good for cumulative contracts, such as GDDs, or contracts that depend on several weather variables and where the correlation between these variables can be included in the simulation process.  An additional advantage of the IS and HDA methods is that weather forecasts can be incorporated in the pricing process though the E(P) and possibly ((P) terms by their dependence on E(I) and ((I).  The weather market actively follows forecast information and will modify its estimates of E(I) and ((I) from historical information if necessary
.

Daily Simulation.  Daily Simulation (DS) methods are one of the most complex ways to price weather contracts. A statistical model is built for daily meteorological variables and is used to create thousands of years of artificial daily data. Index values can be calculated from this data, the weather contract can be applied to each simulated index value to create thousands of simulated payouts from which the expected and variable payout statistics can be calculated.  Building daily simulation models that correctly capture the physical relationships between many meteorological variables at many sites poses significant scientific, mathematical and programming challenges
 and should only need to be used for path-dependent contracts, e.g. knock-in or knock-out options or exotic or non-linear structures that depend on several variables or critical daily values.  As these models involve manipulating daily data, they tend to be much slower than the other methods outlined above and, if built correctly, do not offer more accuracy that the IS method for simpler structures such as cumulative rainfall or GDD contracts
.

Market Pricing

Finally, for completeness, if underlying indices are the same or well-correlated to indices that trade frequently in the secondary over-the-counter and exchange-based derivative market, the prevailing market price of traded contracts can influence the cost of the end user contract through the terms E(P) or ((P).  For example, if November-March GDDs correlate strongly with November-March HDDs measured at the same station, then a market provider could use the market-based HDD contract to hedge an end user GDD structure.  If so, the provider will want to account for the market price of the HDD index in the pricing of the end user structure by adjusting the theoretical structure cost by any extra costs or benefits incurred by hedging
.  This can be done by making the structure price independent of model based estimates of μ and σ and allowing the market price of the underlying HDD swap (μmarket) and the implied standard deviation from the prices of HDD option contracts (σmarket) to be used instead for the parameters of the index I when calculating E(P) or ((P) via HAD or IS methods.  In other words, replacing the model estimates of μ with γ*μmarket, and σ with γ*σmarket, where γ is the appropriate conversion factor from cumulative HDDs to cumulative GDDs, as measured at the station.  Using the market as a benchmark also has an advantage as the traded weather market incorporates weather forecast into its prices. They therefore offer an indicator of how price estimates using historical data could be modified to reflect forecast information
.

End User Perspective

On receiving a price quotation for a weather risk management solution from a market provider, an agricultural grower or producer must decide if, given the price, such a solution is the best strategy for the business to manage its weather risk.  Some of the advantages and disadvantages of using a market-based risk management tool are highlighted below for an end user to consider.  There are many technical and practical measures a grower can take to make his crops more resilient to the vagaries of the weather, such as investigating in better irrigation systems, new strains of seed or new farming technologies. Likewise, an agricultural product sales company, for example, may choose to diversify into other products in order to reduce their overall exposure to a particular weather event. Although such strategies will not be covered in this Chapter, the relative cost and efficiency of choosing such approaches, over an insurance or derivative weather based-solution, must also be considered by the end user. Ideally the end user should focus on the most cost-efficient and effective means for dealing with the weather risk it faces by determining the optimal interaction of risk retention, risk transfer and potential operational strategies, to create a comprehensive risk management solution.  

i. Revenue Volatility and Value-at-Risk

From an agricultural end user’s perspective, the cost of E(P) is essentially already embedded in the business – it is the average annual cost (loss) of weather inherent in running the business in question, be it farming a crop in a particular region or selling a specific agrochemical product.  In other words, without protection the grower or producer can expect to lose this amount on average each year.  Therefore the premium the grower or producer ultimately pays for weather risk management product is only the risk margin charged by the provider over the expected loss.  This is illustrated by the schematic below (Figure 7).  By purchasing a tailored weather hedge an end user receives a reduction of revenue volatility due to weather, but at a cost – the risk margin.  However, reducing the volatility at an appropriate cost increases the return per unit risk, or the quality of earnings of the end user (Box 5). 

Obviously, the end user must also consider the efficacy of the weather hedge and decide whether the risk management contract offers protection in a worst-case scenario for his business.  This can, to a certain extent, be quantified with historical information.  The relevant question the end user should consider is whether the payout from a risk management contract based on a weather index effectively reduces the end user’s value-at-risk (VaR); in other words whether it reduces the potential economic loss of the end user business expected to be exceeded with a given probability within a given time horizon
.   A grower’s or producer’s VaR is an effective measure of the overall vulnerability of the business to external shocks, be it price movements or fluctuations in supply and demand for their product.  Weather protection that limits the potential downside revenue exposure of a business reduces the end user’s overall VaR.  Minimizing VaR also has the associated cost – the risk margin – but it raises the question as to whether a business could withstand extreme systematic shocks, and their ramifications, without protection limiting losses in catastrophic years. 
The birth of the weather market has created an opportunity for a business to protect itself from the impact of non-catastrophic weather variations on its income statement.  Previously, traditional insurance products dealt primarily with losses that impacted the balance sheet, through the protection of physical assets from damage due to catastrophic weather. A business that protects its revenues and, as a result, has a less volatile revenue stream may benefit by receiving, for example, a lower cost of debt or increased access to credit and, for public companies, potentially improved stock valuations or stronger credit ratings
.  Eliminating the uncertainty associated with non-catastrophic weather-related risk allows an operation to concentrate on its core business and focus on controllable targets and growth.  These benefits associated with reducing revenue volatility and VaR, in relation to the effective cost of hedging, are considerations for the end user.  Just like the weather market providers, an end user must also decide how it values risk in relation to return in the context of its business.  It must define how much risk it is willing to hold and the budgeted cost at which it is willing to do so.

ii. Basis Risk

A major concern with index-based weather risk management products is basis risk – the potential mismatch between contract payouts and the actual loss experienced. On considering weather-index insurance as a product for growers, Jerry Skees writes, “[t]he effectiveness of index insurance as a risk management tool depends on how positively correlated farm-yield losses are with the underlying area yield or weather index.”
  As with the regulatory concerns regarding the definition of insurance (Section 2), this statement relates to the question of whether insurance based on a weather index can substitute a traditional crop insurance policy and indemnify the grower for his losses. 

Basis risk is a concern for all weather variables but it is particularly important for rainfall, which exhibits a high degree of spatial and temporal variability.  For example a weather station on which a weather contract is based may not experience the same rainfall patterns or totals during the calculation period as the locations an end user wishes to protect.  For this reason contracts based on hail are not products that are offered by weather market providers; hail is a highly localized meteorological phenomenon, although it can be indexed to an observing weather station, it may not be an effective risk management strategy for an end user.  Although historically an index and losses may correlate strongly – showing than an index could be used as an underlying trigger to indemnify losses in an insurance contract (Section 2) – a good correlation is not a guarantee that the underlying contract payout will match the actual loss experienced. Basis risk therefore – which can often be minimized by effective or intuitive structuring and by using local stations
 – is always an issue when dealing with an index-based risk management solution.  A potential basis risk outcome can be quantified by using historical data, however the key point to consider, as outlined above, is the efficacy of the hedge and the effective reduction the insured party’s overall operational VaR
 (Box 5).
Box 4: The Corn Grower’s Weather Hedge

On receiving the grower’s price request, the broker contacts a company that he knows actively sells weather risk management products.  The company already has historical weather data from Corntown Airport from the NWS going back for 30 years, although it is not a station on which they have written a weather contract on before.  The data from the Corntown Airport is good, with no gaps or obvious discontinuities (Section 4).  The weather structurer at the company computes the cumulative MGDDs from May 6th – September 15th – as specified by the broker – for each year in the historical data set.  The structurer observes that there is a significant warming trend in the data – recent MGDD values have been higher than values in the past – and therefore detrends the 30 MGDD index values to make the older data consistent with today’s warmer temperatures (Box 6). The average value of the MGDD index using 30-years of detrended data is E(I) = 2567 with a standard deviation of σ(I) = 131.   

The structurer then applies the weather insurance contract to each of the 30 detrended MGDD index values to create a historical time-series of contract payouts.  He finds the average payout of the contract is E(P) = $21,303 with a standard deviation σ(P) = $54,666.  He takes α = 25% and therefore calculates a premium to be:

Premium = $21,303 + 0.25*$54,666= $34,970
He decides to quote the broker a price of $34,970 for the contract
.

Box 5: The Corn Grower’s Weather Hedge
The grower receives the quote from the broker for $34,970 for the weather contract.  He considers how this will impact the overall revenue performance of his business and asks the postgraduate student from the local Agricultural University, who helped him construct the MGDD index, to assist him with the analysis.  They study his past seven years of yield data and the corresponding MGDDs values for each of those years (Figure B).  They then apply the grower’s corn supply contract specifications and the weather hedge to each year to see what would have happened.  

Figure B: Historical Contract Payouts and Farm Yields
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Table D: Corn Grower’s Expect Revenue With and Without Weather Contract 

	Year
	Yield (bu/hct)
	MGDDs
	Total Farm Production (bu)
	Hedge Payout ($)
	Net Revenue without Hedge ($)
	Net Revenue with Hedge ($)

	1998
	263.4
	2551
	395,100
	-34,970
	882,850
	847,880

	1999
	455.2
	2651
	682,800
	-34,970
	1,957,000
	1,922,030

	2000
	145.5
	2249
	218,250
	228,700
	263,875
	492,575

	2001
	510.5
	2602
	765,750
	-34,970
	2,164,375
	2,129,405

	2002
	317.1
	2399
	475,650
	17,200
	1,164,775
	1,181,975

	2003
	580.2
	2649
	870,300
	-34,970
	2,425,750
	2,390,780

	2004
	481.6
	2550
	722,400
	-34,970
	2,056,000
	2,021,030


They decide to ignore 1998, where farm production was low but the hedge didn’t payout as they know there were other factors that contributed to the low yield on the grower’s farm that year, that were not temperature related.  They compute the average revenue expected from both strategies using data from 1999-2004: on average the grower expects to make $1,671,963 when not weather hedging and $1,689,633 when hedging, despite paying an annual premium of $34,970.  They then study the deviations from the expected revenue level for both strategies:

Table E:  Deviation in Expected Revenue Under Two Risk Management Strategies

	Year
	Deviation from Expected

Without Hedge ($)
	Deviation from Expected

With Hedge ($)

	1999
	285,038
	232,398

	2000
	-1,408,088
	-1,197,058

	2001
	492,413
	439,773

	2002
	-507,188
	-507,658

	2003
	753,788
	701,148

	2004
	384,038
	331,398

	Expected Revenue
	1,671,963
	1,689,633

	Worst Case Revenue
	263,875
	492,575

	Value-at-Risk
	1,408,088
	1,197,058

	Expected Revenue/VaR
	119%
	141%


The grower is further encouraged when he sees the superior risk/return characteristics of the weather hedging strategy over the unhedged strategy.  By entering into a weather contract for the past six years the grower would have reduced his Value-at-Risk, which he defines to be the difference between his expected revenue and his worst case year, by over $200,000, resulting in a 32% increase in the risk-reward ratio, i.e. his business would have generated a higher return for less risk under the weather hedging strategy.  Although he knows the MGDD index does not correlate perfectly with his risk, he is satisfied with the performance of the index as a base for hedging his corn production in the past six years.

However, the postgraduate is not happy with this analysis and decides to investigate the impact of weather on the grower’s revenues further.  He looks at all 30-years of historical cumulative MGDD values for May 6th – September 15th at Corntown Airport weather station and notices that there is a warming trend in the data, making farming of corn more difficult in the past due to cool summer temperature conditions.  The postgraduate decides to detrend the historical MGDD data by using a linear least squares regression to adjust the older data and bring it in line with current warmer levels.  Although he does not have actual production data for the grower’s farm for 30 years, he is satisfied with the cumulative MGDD-yield relationship he established earlier and uses the detrended MGDD data and Equation (b), to infer the yields the grower would have expected to produce on his farm in the past 30 years given the weather conditions in those years and his current farming techniques. The postgraduate then applies the grower’s corn supply contract specifications and the weather hedge to each detrended year to see what would have happened and compares the statistics for both strategies over the 30 scenarios.  He calculates the average revenue, standard deviation of revenue and Value-at-Risk for both strategies and makes a table of the results to show the grower.

Table F: Revenue Statistics Under Two Weather Risk Management Strategies

	Statistics
	Without Hedge ($)
	With Hedge ($)

	Expected Revenue
	2,199,991
	2,186,324

	Worst Case
	471,457
	658,188

	Value-at-Risk
	1,728,534
	1,528,136

	Standard Deviation in Revenue
	862,411
	824,954

	Expected Revenue/VaR
	127%
	143%


The grower sees that the expected revenue is less for the strategy where he hedges his business risk but the postgraduate explains that this is because he pays an annual premium of $34,970 to the insurance company each year for the weather hedge.  The grower understands that the company must be charging more for the contract than the expected or fair value.  However, the grower notices that his worst-case revenue year is almost $200,000 less under the weather hedging strategy and that the standard deviation in his revenues under that strategy is also reduced.  He also notes the superior risk/return characteristics of his business portfolio – a 16% increase in the risk-reward ratio – under the weather hedging strategy as compared to the unhedged strategy.  Given these benefits the grower chooses to hedge his weather exposure with the weather derivative contract.
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Figure C:  Distribution of Expected Revenues 

4. Weather Data

Data Requirements

In order to implement a successful weather risk management program, the data used to construct the underlying weather indices must adhere to strict quality requirements, including:

1. Reliable and trustworthy on-going daily collection and reporting procedures.

2. Daily quality control and cleaning.

3. An independent source of data for verification (e.g. GTS weather stations).

4. A long, clean and internally consistent historical record to allow for a proper actuarial analysis of the weather risks involved – at least 30 years of daily data is ideally required.

The premium associated with weather risk management strategies is based on a sound actuarial analysis of the underlying risk.  An appropriate premium given the probability and severity of specific weather events will be charged by the commercial risk-taker, hence the quality of historical and on-going weather data is paramount.  Nearly all weather contracts are written on data collected from official National Meteorological Service weather stations; ideally, these are automated stations that report daily to the GTS – the World Meteorological Organization’s (WMO) Global Telecommunication System – in internationally recognized standard format that then undergo standard WMO-established quality control procedures.  

In addition to defining financial or insurance terms, all weather contracts must also include instructions on how to determine and adjust weather data, for example in the event that weather data is not recorded or unavailable from the specified source during the calculation period.  Financial contracts that trade in the secondary OTC weather market are usually subject to fallback methodology specifications
 which identify a nearby “fallback” station to be used in the event of missing data from the primary reference weather station (RWS) and detail exactly how fall-back station data will be adjusted to infer and in-fill the missing data from the RWS.  In cases where fallback stations are not available other methodologies or provisions must be outlined in the contract terms. 

End user’s without access to weather data satisfying the above criteria or where the spatial coverage of a National Meteorological Service’s weather station network may not be sufficient to fully represent an end user’s weather risk profile, may not able to benefit from weather risk management solutions.  However, there are potential alternatives to data collected from ground-based observatories that could be used to structure risk management products, which will be outlined below.

Data Sources

i. Weather Stations

All contracts traded in the active secondary OTC derivative market are based on climatic weather data collected and published by the National Meteorological Service (NWS) of the country in question. Each weather station in the global NWS network has a unique WMO ID number, which is used for international identification, as well as a reference latitude, longitude and elevation.  Stations are generally manned by NWS staff or volunteers who are trained by the NWS and whose equipment is certified and maintained to the NWS to WMO standards.  NWS weather stations produce SYNOP reports, observations that are made at internationally agreed times by all meteorological observers. The regulations and practices are set by the WMO and adhered to by all NMSs.  SYNOP reports – covering elements such as temperature, wind speed, rainfall, sunshine hours, humidity and atmospheric pressure – are generally made at 3-hourly intervals to monitor real-time conditions.  NWSs then communicate this data from specific stations in their observing network to the GTS, for dissemination to the global weather observing and forecasting community. There are well over 8000 SYNOP stations reporting from sites around the world.  SYNOP summaries, for example for temperature and rainfall, are reported at the following times: 

· Minimum Temperature is reported at 0600 GMT for the previous 12 hours. 

· Maximum Temperature is reported at 1800 GMT for the previous 12 hours. 

· Rainfall is reported at 0600 and 1800 GMT for the previous 12-hour periods. 

Climate data are daily summary reports of variables such as minimum, maximum and average temperature, rainfall or sunshine hours from a station. The reporting times vary from country to country and there is no internationally agreed standard.  For example in the UK values are recorded for the period 0900-0900 GMT, in Germany 0730-0730 GMT, in France 0600-0600 GMT, in Finland 1800-1800 GMT for temperatures and 0600-0600 GMT for rainfall
.  Historical climate data is produced by a NWS from the hourly SYNOP data after an internal quality control process.  For example
, each element is automatically checked: to see that it falls within acceptable limits; against other reference data to ensure consistency, such as checking that Tmin temperature is less than Tmax temperature; for differences between nearby stations; for values that fall outside the climatological extreme values for a station; for large step changes between 3-hourly reports. Any values that are flagged as being suspicious in the checks described above are then checked by climate experts within the NWS, who will either correct or reject a value based upon the evidence available. Similar automatic checks are also performed on SYNOP data, as errors can indicate faulty sensors or incorrectly submitted reports.  It is only after the above checks have been carried out that the climatic dataset is released.  For this reason the terms of a weather contracts, except CME contracts, also include a 40-day correction period, that allows for changes by the reporting agency in the data as a result of the quality control process.  The CME must settle positions on a daily basis and use data provided by EarthSat
, who produce climatic data values from NWS SYNOP data within a day, for CME contract settlement. 

Historical climate and SYNOP data, and daily up-dates, can be purchased from each NWS, a list of which can be found on the WMO website.  For example in the U.S. the primary source of weather data is the National Climatic Data Center, in the UK weather data can be purchased from Weatherxchange
, a joint venture with the UK Met Office set up to support the European weather derivatives market. Weatherxchange provides quality-controlled historical climate and SYNOP data sets across UK and has distribution rights to data from several NWS across Europe including Germany, Italy, France, Netherlands, Austria and Spain. Data can also be purchased from private data vendors, such as Risk Management Solutions/EarthSat
 and Applied Insurance Research (AIR)
.  Private vendors often offer additional value-added services such as data cleaning and adjusting (see below).


ii. Reanalysis and Satellite Products

It is also worth mentioning that other weather datasets exist, that could potentially be used for certain weather risk management products and contracts if weather station data is not available or not representative of the risk.

NCEP-NCAR Reanalysis.  The NCEP-NCAR Reanalysis
 is a joint project between the U.S. National Centre for Environmental Prediction (NCEP) and the National Centre for Atmospheric Research (NCAR) to produce a 40-year record of global atmospheric analyses using a data assimilation system that is kept unchanged over the reanalysis period 1958-1997.  An identical Climate Data Assimilation System using the same frozen analysis/forecast system has been used to continue to perform data assimilation to date, to ensure the continuation of the analysis.  The reanalysis has a horizontal resolution of approximately 210km, with 28 vertical levels, and is a complete, consistent and continuous gridded daily global dataset of all atmospheric variables (surface and air temperature, precipitation, wind speed, pressure, humidity) from 1958.  The data is available for free download
 from NCEP-NCAR, and although it has a low-resolution, it may be appropriate for large-area weather exposures that are not covered by a weather station network.  The European Centre for Medium Range Forecasting (ECMWF) has recently produced a higher resolution 40-year reanalysis
, although it is not yet updated on an ongoing basis.  The use of a constant and consistent data assimilation system implies the dataset would be an ideal base for pricing weather contracts, however the low-resolution makes the reanalysis inappropriate for small-scale, localized risk.

Satellite Data.  Another alternative to weather-based indices is to use satellite-based products to measure the pertinent weather parameters traditionally measured using ground observatories.  Two strong candidates for agriculture include satellite-derived precipitation estimates and Normalized Difference Vegetative Index (NDVI) satellite readings.  Current satellites offer high-resolution, albeit expensive, data; NDVI data, for instance, could be used to monitor crop “greenness” and therefore crop development and biomass.  However, satellite-based products are not often used in the weather market due to their short and inconsistent historical data lengths; the first generation of earth observing satellites were launched in 1979, however calibrating older low-resolution data – through the generations of improved versions – to data from the current satellites is not straightforward.  Nonetheless, both Spain
 and Alberta, Canada
 have recently launched drought insurance programs for forage based on NVDI indices. Risk management products against tropical cyclones – whose strength and location are measured and monitored using real-time satellite data – are also available in the weather insurance industry.  The use of satellite data has also been recently discussed in the broader context of traditional agricultural insurance products
.

Cleaning and Adjusted Data

Despite NWS quality control procedures data from some meteorological observing stations may still have missing and erroneous values.  Stations may also have undergone instrumentation and/or station location changes, which can introduce systematic changes to a historical dataset. For instance, if a station was moved from a rural to an urban location it may be several degrees warmer in the new location and therefore there will be an artificial jump in the station’s historical temperature record.  Records of station or instrumentation changes are usually kept by the NWS for each weather station.  Therefore in order for data to be used for pricing weather risk management products, the raw data should be cleaned to correct for errors and missing values, and checked and perhaps adjusted for non-climatic inhomogeneities that could make the historical data unrepresentative of current values.  The methods of cleaning and adjusting data often involve statistical procedures beyond the scope of this Chapter.  However an awareness of the possible need for cleaning and adjusting of data is recommended and the approaches used are briefly outlined below.  Cleaned and adjusted datasets can also be purchased from private vendors with proprietary data estimation models, such as RMS and AIR.

Cleaned Data.  Creating cleaned datasets involves identifying and correcting erroneous values in historical weather datasets and in-filling missing data with realistic values using appropriate statistical techniques where necessary.  The first steps are the same as the NWS quality control procedures outlined above: all observations are screened for physical inconsistencies and erroneous values by comparing the data against itself and against alternative data sources (e.g. SYNOP, hourly data, climate reports, station climatology and surrounding stations).  If missing data cannot be recovered (e.g. from SYNOP data) or if data is found to be erroneous, the value is flagged and filled with an estimated value. A common method used to construct an estimate is to employ regression equations calculated from periods of overlapping data with the n best correlated neighbour stations.  A weighted average of the estimates is used to calculate the missing data value at the target station. The weights are set according to the correlation coefficient between the target station and the surrounding neighbours. This method can be used to both clean data and to extend data records.  Sometimes SYNOP or hourly data can also be used to reconstruct missing or erroneous values.  

Adjusted Data.  Raw meteorological observations sometimes exhibit non-climatic jumps in the historical record due to movements in the measurement station, changes in the time of measurement or changes in the equipment used to make the measurements. Often such discontinuities do not significantly affect the historical record but in some cases discontinuities can introduce artificial trends to the data or impact the variance or the average value of readings.  Statistical procedures based on neighbouring stations exist to identify significant discontinuities and account for these changes in cleaned meteorological data records
,
.  The challenge in these methods is to correct for the artificial discontinuity without altering the natural weather variability measured by the station. 

Detrending Data
Meteorological data often contains trends that arise either due to natural climate variability, urban heating effects or the impact of global warming. Irrespective of the cause, in some circumstances it may be useful to be able to remove such trends from the data. Such a procedure is known as detrending.  The aim of detrending data for pricing weather risk is to obtain better estimates or forecasts of E(I), σ(I) and VaRX(I) from the historical data for pricing weather contracts.  Warming trends, for instance, can significantly impact the defining parameters of the underlying data.  By not accounting for such trends E(I) may be significantly under-estimated and σ(I) over-estimated, which can lead to mispricing of contracts which settle on future data.  Many different mathematical methods exist for detrending data, each based on a different set of assumptions.  

As well as choosing the method there are two further points to consider when detrending data.  Firstly, the underlying data must be prepared in a selected format:  daily, monthly or annual averages of a meteorological parameter can be detrended and then the new detrended historical values of an index can be computed; or the historical values of the index itself can be detrended.  Secondly, the number of years of historical data or index values to be considered in the detrending process must be selected
.  Detrending data using the same method but a different number of years, for example 30-years versus 40-years, can lead to significantly different results.  

In essence the aim of detrending is to statistically model the underlying process by decomposing a dataset into a deterministic trend and a stochastic noise term around the trend:

D(t) = Y(t) + ε(t),  ε(t) ~N(0,σ2)
(20)

where D(t) is the process represented by the dataset, Y(t) is the deterministic and therefore predictable component, ε(t) is a normally distributed noise component with a mean of zero and standard deviation σ and t is unit time.  Determining how much of the historical data variability is attributed to Y(t) gives an indication of how well a particular model represents the underlying data. The method and approach chosen for detrending data can be highly subjective and the decision to detrend or not to detrend should be informed by some underlying criteria
.  For example, choosing a detrending method that is better at predicting future data values than another method, or than not doing anything at all, is preferable to a method that increases the uncertainty in predicting future values.  The performance of different methods can be compared by considering characteristics of the distribution of errors in the predictions they make.  By using the historical data to back-test various detrending methods and approaches, estimates of the uncertainty around the trend can be found which can inform the error associated with a particular method for estimating future values.  

However, identifying trends and their cause is itself a subjective process and care should always be taken to check the sensitivity of detrending results to the underlying method used.  Cross-checking several detrending methods and approaches and visually sense-checking the data is always recommended.  The weather market often uses the 10-year average of an index as a quick first-guess estimate for E(I).  The simplest and most commonly used method for detrending data, polynomial detrending, is outlined below as an example.

Polynomial Detrending.  The aim of this method is to fit a polynomial function of time to a meteorological dataset.  The polynomial function is defined as:

Y(t) =  m0 + m1 t + m2 t2 + m3 t3 + … + mp t p
(21)

where t is time.  For example, if the underlying dataset is composed of 40 historical index values from 40-years of weather data, t will be in years.  The constants mi are chosen to minimize the root mean squared error R2 of the vertical deviation of n meteorological data points from the trend line, where R2 is given by
:
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(22)
The simplest polynomial trend is when p = 1, a linear trend which fits a straight line through a set of data points:

Y(t) =  m0 + m1 t
(23)

The intercept and slope m0 and m1 are estimated by the intercept and slope of the least-squares regression line.  

The standard error (SE) in the estimated slope parameter m1 and intercept parameter m0 from the least-squares regression line are given by
:
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where i = 1, … n , n is the number of years of historical data included in the regression and s is an estimate of σ, the standard deviation of the noise term in Equation 20, given by: 
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The standard error of the linear model predicting an individual value D(tX) at a time tX, for example in year n+1, is given by
: 
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The t-statistic
 of the linear slope term m1 can be used to determine whether or not the linear trend is statistically significant and is defined as:
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The t-statistic for that coefficient is the ratio of the coefficient to its standard error. The t-statistic can be tested against a Student’s t-distribution with n-2 degrees of freedom to determine how probable it is that the true value of the coefficient is zero and thus how significant the fit is.  The r2 value is the fraction of the total squared error that is explained by the linear model and is an indicator of the predicative power of the model.  The r2 value is calculated as follows:
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and is the square of the correlation coefficient, r, between the linear model predictions and actual data observations.  A simple method to test the null hypothesis that the correlation coefficient is zero can be obtained by using a Student's t-test with n-2 degrees of freedom on the t-statistic:
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where n is the number of years of historical data considered.  By comparing values for SEy, r2 and the statistical significance of m1 for a given confidence level, decisions can be made as to whether a linear trend actually describes the data well and the optimal number of years of data n to be considered in the calculation.  The detrended historical dataset, Ð(t), will then used to calculate new values of the index I and therefore to calculate revised estimates of E(I), σ(I) and VaRX(I) for pricing. Values of Ð(t) are given by: 

Ð(ti) = D(ti) – Y(ti) + Y(tn), i = 1 … n

(31)

for all n years that are included in the detrending calculation, where n is the most recent year (Box 6).  

Often increasing the parameter p creates a better data fit, as higher order polynomials capture higher frequency variations in the data.  However over-fitting data is a potential danger of all trend-fitting techniques.  By arbitrarily increasing p, high-frequency fluctuations, essentially the noise in the underlying historical data record, can be reproduced by the model, which will have little predictive power for future data.  The underlying physical nature of a higher-order polynomial should also be questioned and therefore it is often best to fit a simple linear trend to data instead of assuming higher-order processes. Examples of other detrending techniques include the moving average
, LOESS
 and low-pass filter
 methods. 

Box 6: The Corn Grower’s Weather Hedge
On analyzing the historical MGDD record from Corntown Airport weather station the structurer at the company responsible for pricing the request from the broker realizes that there is a strong warming trend in the data.  Temperatures were cooler and hence cumulative MGDD values were lower in the 1970s compared to the late 1990s and early 2000s.  Therefore in order to get a better estimate of the weather insurance contract payout statistics, the structurer decides to detrend the raw MGDD record, D(ti).  He chooses a first-order polynomial function, Y(t), to model the trend in the MGDDs:

Y(t) =  m0 + m1 t
(e)
He fits a least-squares regression line to the data that minimize the root mean squared error of the data points around the trend line. The intercept and slope, m0 and m1, are estimated by the intercept and slope of the least-squares regression line and are found to be m0 = -12346 m1 = 7.4413.  The r2 of the fit is 20.1%, which implies that the linear trend explains 20% of the overall interannual variability of the MGDD index.  He computes standard error in the m1 estimate and therefore the t-statistics for the coefficient m1:

tstatisticm1 = 7.4413 / 2.808 = 2.65

The t-statistic is tested against a Student’s t-distribution with n-1 degree of freedom to determine how probable it is that the true value of the coefficient is greater than zero.  The t-statistic is significant at the 99.3% confidence level, i.e. the probability that the true value of the coefficient is zero is 0.7%.  Therefore the structurer is happy to use the linear model to detrend the historical MGDD data.  

The detrended dataset Ð(ti) is constructed by adjusting each historical value by the amount predicted by the linear trend model, i.e.:

Ð(ti) = D(ti) – Y(ti) + Y(t2004), i = 1975 … 2004
(f)

for all 30 years that are included in calculation.  The average value of the MGDD index, using 30-years of raw historical data, is E(I) = 2459 with a standard deviation of σ(I) = 146. The average value of the MGDD index, using 30-years of detrended data, is E(I) = 2567 with a standard deviation of σ(I) = 131.   The structurer then applies the weather insurance contract to each of the 30 detrended MGDD index values to create a historical time-series of contract payouts.  He finds the average payout of the contract is E(P) = $21,303 with a standard deviation σ(P) = $54,666.  He takes α = 25% and therefore calculates a premium to be:

Premium = $21,303 + 0.25*$54,666= $34,970
He compares this to what the premium would have been if he had not adjusted for the warming trend in the data. He finds the average payout of the contract, based on raw MGDD values, is E(P) = $69,068 with a standard deviation σ(P) = $114,809 which would imply a premium of:

Premium = $69,068 + 0.25*$114,809= $97,770
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The warming trend at Corntown Airport is decreasing the risk of cool summers in the area and hence is reducing the premium of a weather hedge designed to protect against this risk for the grower.

Figure D:  MGDDs at Corntown Airport Weather Station

5. Further Reading

The emerging weather risk market clearly offers new risk management tools and opportunities for agriculture.  The aim of this chapter was to briefly illustrate how an end user in the agricultural industry could use a market-based solution to mitigate the financial impact of weather on its business operations.  The key steps for designing a weather risk management program outlined above involve: identifying and quantifying the weather risk; structuring a weather risk management solution that best protects the end user; executing a the contract in optimal form given the local regulatory framework.  These processes necessitate obtaining, analyzing and possibly cleaning, adjusting and/or detrending historical weather data, to understand the nature of the underlying weather risk and its financial impact on a business, in order to structure an appropriate risk-transfer or risk-smoothing solution.

Information for this chapter was taken from a wealth of literature that has been written on the subject of weather risk management and interested readers are strongly recommended to refer to these texts for further information and discussion.  An excellent in-depth introduction to the weather market can be found in “Weather Risk Management: Markets, products and applications” (Banks, E. ed, 2002)
.  More general reading of weather risk and weather risk management can be found in “Climate risk and the weather market” (Dischel, R. 2002)
 and  “Insurance and weather derivatives” (German, H. 1999)
.  The Social Science Research Network at http://www.ssrn.org contains a large quantity of papers and articles on aspects of weather derivatives from analytical pricing methods, simulation models, detrending methods and the use of forecasts.  The papers written by Dr. Stephen Jewson are particularly recommended and can be found on http://www.stephenjewson.com.  Another good sources of articles and information on weather derivatives and the market is the Artemis website at http://www.artemis.bm and the industry body the Weather Risk Management Association at http://www.wrma.org.  The Guaranteed Weather website has a wealth of case studies and weather risk management examples at http://www.guaranteedweather.com/casestudies.php. Information on weather risk management in the developing world can be found at http://www.itf-commrisk.org.

Figure 1: Notional Value of All Weather Contracts in $US
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Figure 2: Percentage of Total Weather Contracts by Location (Excluding CME Trades)
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Figure 3: Potential End user Market by Economic Sector 2003/2004
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Figure 4: Percentage of Total Weather Contracts by Index (Excluding CME Trades)
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Figure 5: Call Option Payout Structure and Wheat Grower’s Losses
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Figure 6: Collar Payout Structure and Agrochemical Company’s Deviation from Budgeted Revenue
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Figure 7: Schematic of a Business’s Historical Revenues and the Impact of Weather Hedging
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