
Rainfall Modeling and Simulation

1 Introduction

The payout and price of a rainfall-based index insurance contract are both functions of rainfall, which is
a random process. In order to design and price these contracts, therefore, the buyers and the sellers of
the contracts must both have a satisfactory understanding of the rainfall process, and must be able to
communicate their beliefs to each other in order to negotiate the design and price of the contract. Rather
than base a contract design on the empirical (historical) distributions of various rainfall statistics, such as
the 10th percentile of seasonal rainfall, or the length of the longest dry spell in the season, which can be
sensitive to individual, unusual historical events and further limited by sparse or missing data, the designers
of insurance contracts can use statistical models trained on historical data to more accurately estimate
the distributions of various rainfall-based statistics. A statistical model for rainfall has at least two useful
properties: (1) it can describe the relationship between rainfall at a given location and other weather-related
variables, such as large-scale climate variables and rainfall observed at other nearby locations, in order to
reduce the unexplained variation in rainfall amounts, and (2) it provides a principled way to quantify the
uncertainty that accompanies rainfall processes, which is crucial to the efficient design of insurance contracts.

This document will review and discuss different statistical models used for rainfall, and different strategies
for evaluating these models and simulating rainfall from them. We pay particular attention to the way in
which low-rainfall events are modeled, because the main purpose of these contracts is to allow farmers to
hedge their risk of poor yields due to drought. Many of the models we discuss, though, could also be used to
investigate properties of floods, or be used to simulate rainfall time series as inputs to crop growth models.
We believe that there is currently a gap in the knowledge between how rainfall simulators generally work,
and how they work specifically in the context of index insurance. We recommend that further research be
focused on filling in this knowledge gap, and we provide some guidelines in Section 3 for how this can be
done.

2 Rainfall Models

We will review four basic types of rainfall models that have been the focus of most of the recent research
on rainfall modeling: (1) Generalized linear models (GLMs), (2) Hidden Markov models (HMMs), (3)
Nonparametric models, and (4) “Mechanistic” models. The first three types are reviewed in Wilks and
Wilby (1999), and the first and fourth types are reviewed in Chandler, et al. (2007).

2.1 GLMs

Coe and Stern (1982) and Stern and Coe (1984) first introduced the use of GLMs to model a daily time
series of rainfall measurements at a single site. These types of models are the simplest example of stochastic
weather models, and were the first to be widely used. GLMs are parametric models that have the structure
to condition the outcome variable, daily rainfall, on observed covariates, such as sine and cosine functions
of time, to account for seasonality, climatological variables such as sea surface temperature, and regional
forecasts. Multiple sites can be modeled this way using multivariate time series methods, where correlations
across space are modeled, and rainfall outcomes at locations that were not observed can be imputed. The
marginal distribution of daily rainfall data has a point mass at zero (dry days), so it is common for these
models to be comprised of two parts: (1) a model for dependent binary data - such as a two-state Markov
chain model - to model the occurrence of rainfall on a given day, conditional on previous rainfall occurence,
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and (2) a right-skewed distribution, such as the exponential, gamma, or mixed exponential distribution, to
model the intensity of rainfall on wet days. Sine and cosine functions of different periods can be included
or excluded according to formal tests such as likelihood ratio tests; the most obvious source of seasonality
is the yearly rotation of the earth, although lower and higher-frequency sources of seasonality drive rainfall
processes as well, such as ENSO state, which occurs at a period of 3-7 years, and various local atmospheric
conditions, which can occur on periods of one month or shorter. One of the strengths of GLMs is that
they can account for climate change over a long time scale through their incorporation of covariate effects.
Most GLMs are fit using maximum-likelihood methods (McCullagh and Nelder, 1989), although Bayesian
methods can also be used.

2.2 HMMs

The second type of model is an HMM, which is also fit to discrete data in time and space, but differs
from a GLM in that it models autocorrelation and spatial correlation through some number, K, of discrete,
unobserved hidden states, which correspond to different “weather states” that result in different patterns of
rainfall. In an HMM, the hidden states change through time according to a first-order Markov chain, and the
outcomes are modeled as independent draws from distributions conditional on their corresponding hidden
states. Basic HMMs, which are stationary in time, have been extended to model non-stationary processes by
incorporating time-varying covariates (i.e. sine and cosine functions of time, seasonal forecasts, etc.); these
models are called non-homogeneous HMMs, or NHMMs. The first NHMMs for rainfall data, introduced
by Hughes and Guttorp (1994a,b) and extended in Hughes et al. (1999), allowed for seasonality in the
rainfall occurrence process, whereas more recent work (Bellone et al., 2000, Robertson et al., 2004, 2006) has
allowed for seasonality in the rainfall amounts process (i.e. the conditional distributions) as well. NHMMs
can be fit using the EM algorithm or Bayesian methods; in either case, they are fit given a pre-determined
value of K, the number of hidden states. The choice of K can be guided in part by (1) out-of-sample
predictive error measured via cross-validation, and (2) scientific grounds in which the hidden states have
specific interpretations in the context of the application. The autocorrelation structure of HMMs can be
made richer by allowing higher-order dependence in the hidden state sequence, or by relaxing the conditional
independence of observations. The strength of NHMMs for rainfall data lies in their ability to reflect real
scientific phenomena, like regional atmospheric conditions, with the hidden states.

2.3 Nonparametric Models

Nonparametric models for rainfall represent an interesting alternative to GLMs and HMMs, because their
lack of dependence on parametric distributions to describe the data gives them flexibility to model certain
features of the rainfall process better than other models. The key feature of most nonparametric models
is a resampling algorithm, in which daily time series of rainfall are simulated by resampling the observed
data in a way that accounts for the autocorrelation of observed rainfall as well as the relationships between
rainfall and other weather variables. Such models have been developed and fit by Young (1994), Lall et al.
(1996), Rajagopalan & Lall (1999), and Moron et al. (2008). Nonparametric models generally can more
flexibly describe nonlinear relationships between variables, but are sometimes limited in that they can only
reproduce values that have already been observed, which limit their ability to incorporate the effects of
long-term climate changes into the rainfall process.

2.4 Mechanistic Models

The fourth type of model in current use is one that models the physical process of rainfall using radar data
collected at a high resolution in time and space. These models describe a process by which ’rain events’
occur randomly, and spawn smaller ’storms’ at random times and locations within their interiors (which are
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typically regions of over 1000 km2), which in turn are comprised of ’rain cells’ which also arise at random
times and locations within the storm. The entire rain event moves across space at a random velocity. The
resolution of data to which these models are fit is typically high with respect to both space (2 km2 regions)
and time (5 minute intervals) (Chandler, et al., 2007). These models are stationary in time, and are usually
fit with the goal of describing floods in catchment areas. Two drawbacks of these models with respect to
index insurance applications are that (1) they are not well-suited to incorporating covariates that could
explain variation in rainfall over long time periods, and (2) they require high-resolution radar data to be fit,
and this data is unavailable for most developing countries in which index insurance is being used. For these
reasons, we don’t focus on mechanistic models in this report.

3 Rainfall Simulation

No matter what type of model is fit, a common goal is to simulate rainfall from the fitted model. Such
simulations should be produced by incorporating two sources of variation: (1) variation built into the model,
and (2) variation associated with the uncertainty with which the parameters of the model are estimated
during the training phase of the data analysis. This second source of variation is often overlooked. (A
third source of variation could be considered: the choice of the model itself - but we don’t discuss this issue
here). Although Bayesian methods are not widely used in rainfall modeling thus far, they offer a natural and
convenient way to simulate rainfall while incorporating both of the above sources or variability by sampling
from the posterior predictive distribution of the outcome variable (Gelman, et al. 2004).

A crucial fact about index insurance design is that the payout and price are complicated, but deterministic,
functions of rainfall. The payout, for example, is a random variable which is realized once per year, and its
distribution depends entirely on the parameters of the rainfall model (and the parameters of the contract,
which we treat as fixed, for now). The goodness-of-fit of rainfall models is usually checked with respect
to monthly means and variances, and the lengths of runs of wet and dry spells. Mavromatis and Hansen
(2001) compare a group of stochastic weather generators, paying special attention to their goodness-of-fit
with respect to the interannual variability of rainfall, which is known to be somewhat difficult to capture
with statistical models. In this section we will outline steps needed to be taken in order to evaluate the
goodness-of-fit of rainfall models with respect to the particular characteristics of rainfall that influence the
payout of an index insurance contract illustrated in Osgood, et al. (2007).

Consider an index insurance contract for a single site with the following design: Dekadal sums of rainfall
are calculated, and then, based on a sowing condition that stipulates that the growing season starts in the
first dekad to receive more than s mm of rainfall, 3 contract phases are determined, each of which lasts
2-4 dekads and corresponds to a different part of the growth of the specific crop for which the contract is
designed. In each phase, the payout function is a piecewise linear function of the sum of rainfall during the
phase, such as the one illustrated in Figure 1(a). Given the parameters of the contract (sowing condition,
phase definitions, and the parameters of the piecewise linear phase payout functions), the payout for a given
year is a random variable that we observe: the sum of the payouts from each phase. If we have N years
of data, then we observe N realizations of payouts, where N is typically between 5 and 50 for sites that
implement index insurance. Considering that efficient insurance designs only pay out approximately 10-20%
of the time, then even for a relatively long time series, such as a 50-year series, we may only observe 5 to
10 non-zero payouts: many too few observations to estimate the mean or 99th percentile of a distribution,
which are critical factors in the price of insurance (Osgood, et al., 2007).

To estimate the distribution of payouts more accurately we fit a model to daily data and simulate thousands
of years of data. Before we check these simulated payouts against the observed payouts, we recommend
performing a series of intermediate goodness-of-fit model checks of statistics that are components of the
insurance payout. These statistics to check include:

1. Dekadal sums. Check that the model produces dekadal sums with approximately the same distribution
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Figure 1: The payout function and distribution for a hypothesized distribution of rainfall by phase. (a) The
left plot shows a (normal) distribution of rainfall, with the payout plotted on the y-axis as a function of the
rainfall, plotted on the x-axis. The shaded area is the proportion of years in which there is a payout for this
phase, and the darkly shaded area is the proportion of years in which there is a maximum payout for this
phase. (b) In the right plot, the hypothetical distribution of the payout is depicted. There is a point mass at
zero and at the maximum payout (200). The interior of the distribution is a truncated normal distribution.

of the observed dekadal sums, for each dekad of the year.

2. The onset of the growing season. Check that the model-based estimates of the start of the growing
season are in line with the observed sowing dekads.

3. Phase sums. The phase sum is the sum of 2-4 dekads of rainfall. Dekadal sums may be correlated
within the growing season, so even a good model for dekadal sums may be bad for phase sums if it
ignores correlations between dekads.

4. The lower tail of phase sums. Most contracts are designed to pay out in approximately 10-20% of
years. In other words, the triggers for each phase of most contracts are set to low quantiles of the
phase sum distributions. We must pay special attention to the fit of models with respect to these low
quantiles of the phase sum distributions to ensure that the payout distributions are well-estimated.

Using Bayesian methods, the formal name for an analysis of these kinds is a posterior predictive check
(Gelman, et al. 1996). Note that one must check the goodness-of-fit of not only statistics that are explicitly
modeled, but also of those that aren’t. Generally speaking, if the residuals from a rainfall model are spatially
clustered, or are related to other observable weather variables, then a buyer or seller of a rainfall contract
based on such a model could factor in these additional variables and “game the system” to his advantage.

In conclusion, we stress that developing a model for rainfall from which we can make accurate inferences about
low-rainfall events, for the purpose of designing and pricing an index insurance contract, is a challenging
process that has received much attention already, and deserves still more.
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