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Topic 4: On the potential value of seasonal climate forecasts for index insurance  
 
Andrew W. Robertson, Anthony G. Barnston, James W. Hansen, Upmanu Lall, Vincent 
Moron, Daniel E. Osgood, and Liqiang Sun 
 
The modern era of seasonal climate forecasts began in the late 1980s with the first 
successful retrospective predictions of the large 1982–83 El Niño/Southern Oscillation 
event using a dynamical model (Cane et al., 1986). Today, seasonal predictions are 
issued routinely at many national and international centers including IRI, based on both 
dynamical and statistical models (see Goddard et al., 2003). The purpose of this 
contribution is to provide some background into seasonal forecasting techniques, and to 
raise key issues regarding their potential value to index insurance contract design. This 
is a nascent field, but one poised for rapid development in view of the potential 
quantitative value of forecast information. 
 
Insurance design issues 
 
Interventions for dealing with climate risk and adapting to anticipated climate change for 
smallholder agriculture include seasonal climate forecasts (Howden et al. 2007) and 
innovative financial instruments such as weather index insurance (Barrett et al. 2007).  
While there may be benefits to smallholder farmers from integrating seasonal forecasts 
with weather index insurance (Carriquiry and Osgood 2008), this has not yet happened 
in practice, in part because of non-trivial hurdles to implementing integrated products, 
and lack of demonstrated benefits in the smallholder farming context. 
 
Both damaging and beneficial interactions between insurance and forecasts are 
possible. Even with an index-based contract, adverse selection can create problems for 
the financial viability of insurance (Luo et al.,1994), as farmers could use private 
information to purchase insurance only in years with enhanced drought risk and 
probability of payout.  Alternately, acquiring seasonal forecasts may prove too 
expensive for some small-holder farmers allowing insurers to take advantage of the 
farmers. 
 
Skees et al. (1999) proposed that adjusting index insurance premiums based on 
seasonal climate forecasts may reduce adverse selection.  The potential benefits of 
seasonal climate prediction has received some attention for the weather derivatives 
market (Jewson and Brix 2005) and in the context of common crop insurance contracts 
and U.S. agricultural policy (Mjelde et al. 1996; Cabrera et al. 2006; Mjelde and Hill 
1999), but little has been done to formally study the benefits of seasonal forecasts on 
index-based weather insurance schemes for small-holder farmers in less-developed 
countries.  In theory, forecasts and insurance are exact compliments.   Insurance that 
incorporates the forecast in essence insuring against forecast skill potentially allows the 
appropriate response to noisy forecasts. Carriquiry and Osgood (2008) used a stylized 
theoretical presentation of the relationship between insurance, forecasts and input use, 
to argue for the benefits of forecast-based pricing without explicitly addressing the 
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issues of lenders, implementation constraints or real-world evidence of potential 
benefits. 
 
Osgood et al. (2008) provides an illustration of the potential relationship between 
forecasts and insurance in an applied setting.  They use the contracts, data, and design 
constraints from the Malawi index insurance implementation to examine whether there 
may be real-world benefits from incorporating simple forecasts based on ENSO 
conditions into an insurance scheme.  They note that knowledge of ENSO states could 
be used strategically by farmers to undermine the insurance project in Malawi unless 
forecasts are accounted for.  For example, if farmers were to only purchase insurance in 
El Nino years, they could undermine the financial stability of the insurance unless the 
system was modified. 
 
Simulation results suggest that the integration of forecasts and the financial package 
substantially increases cumulative gross revenues. The resulting wealth accumulation 
can reduce long-term vulnerability, supporting adaptation to climate variability and 
change. Basing insurance price on ENSO state more than doubled mean gross 
margins, and increased the maximum gross margin by a factor of more than five relative 
to fixed insurance pricing. The figure (from Osgood et. al. 2008) illustrates the 
differences across seasons in gross margins between one ENSO-adjusted and the fixed 
price package, showing that the gains result from very high gross margins in a small 
number of La Niña years (shaded in the figure).  In El Niño years, the gross margin is 
slightly smaller for the ENSO-adjusted scheme because of the smaller area planted. 
The variability of annual gross margin that the farmer faces is much higher because the 
farmer has the opportunity to earn substantially more in years with abundant rains. 
 
Because this work was based simply on ENSO states, it is merely illustrative.  Work 
must be done to understand the utility of state of the art seasonal forecasts in index 
insurance, develop the tools to design and price insurance considering the forecast, and 
detect when even weak forecasts have enough skill to undermine naïve insurance 
schemes. 
 
Seasonal forecasting 
 
The physical basis of seasonal forecasting rests largely on the memory of the upper 
ocean whose thermal capacities and motions are much larger/slower than those of the 
atmosphere, together with sensitivity of the atmosphere to underlying sea surface 
temperatures. The most pronounced phenomenon with seasonal predictability is the El 
Niño/Southern Oscillation (ENSO), which involves a coupling between ocean and 
atmosphere over the tropical Pacific Ocean, and it is ENSO that often provides a large 
fraction of seasonal forecast skill; ENSO exhibits statistically robust associations with  
precipitation anomalies over  20%–30% of the land in any one season (Mason and 
Goddard 2001).  Atmospheric “teleconnection” patterns are responsible for transmitting 
the ENSO signal to other regions across the globe, and it is the details of these 
patterns, together with the local seasonality of rainfall that determine whether or not 
there is seasonal predictability in rainfall and temperature at a particular location at a 
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given time of year (Ropelewski and Halpert, 1987,1996). Thus, seasonal forecasts are 
only possible because in some parts of the world and at some times of the year, tending 
to work best in tropical regions. 
 
Although the oceans can impact the average weather conditions over a period of a few 
months, the effects of day-to-day weather variability still remain fairly strong so that it is 
not possible to predict with any high degree of accuracy exactly what the average 
weather conditions are like. Thus, although in theory an estimate of the average rainfall 
for the next three months, for example, could be made, the errors in this forecast are 
likely to be large. Instead, forecasters communicate the uncertainty along with the 
forecast, by issuing the forecasts in a probability format, typically in terms of the 
probabilities of forecast categories, such as below-normal, near-normal and above-
normal.  
 
State-of-the-art seasonal climate forecasts are made using multi-model ensembling 
approaches, because the skill of the individual models has been shown to be improved 
by averaging ensemble forecasts made by several different models together 
(Rajagopalan et al., 2002; Palmer et al., 2005). Complex coupled ocean-atmosphere 
global climate models (GCMs) represent the equations of motion of air and water on 
grids of 100–300 km resolution, and parameterize smaller scale motions and rainfall 
processes; these models are run in ensembles with 10’s of members to bracket the 
unpredictable element of daily weather in the seasonal forecast.  
 
Tailoring of forecasts for risk management 
 
Climate risk management generally requires climate information at local scale, and 
often it is the statistics of daily weather that matter most. These needs conflict with the 
customary coarse-graining of seasonal forecasts into tercile categories of seasonal 
averages. While this coarse-graining is designed to reduce the uncertainty in low-
resolution GCM forecasts, it nonetheless often proves possible to extract finer scale 
information of daily weather properties, through statistical bias correction using fine-
scale data records, (e.g. Tippett et al., 2003; Robertson et al., 2004), or through nesting 
high-resolution dynamical regional climate models to capture the effects of complex 
land-surface heterogeneity (e.g. Sun et al., 2005). This is called “downscaling” or 
“tailoring” of the GCM output to the specific application at hand, and can sometimes 
reduce the uncertainty by isolating the predictable aspect that may be smeared out in 
the coarse-grained forecast. 
 
For example, frequency or persistence of daily rainfall is often found to be more 
predictable than the seasonal rainfall total in the tropics (Moron et al. 2006), and may be 
more relevant that the seasonal rainfall total for agriculture; the onset of the monsoon 
season is also sometimes predictable (Moron et al., 2008b,c), and may help planners 
anticipate when farmers will plant their crops, while knowledge of the probability of a 
“false start” to the rains may help minimize the cost of wasted seeds.  Ensembles of 
stochastic daily weather sequences enable crop-yield simulation to explore decision 
making strategies (Hansen et al., 2006). In this context, seasonal forecasts can be 
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thought of as conditioning climatological likelihoods of particular sequences. The climate 
forecast can, in principle, be incorporated as a smaller or larger force on the system. It 
then becomes imperative that this conditioning be unbiased, so that the resulting 
forecast probabilities are correct on average (Mason et al., 2007). 
 
 A central tenet of IRI’s “demand driven” approach is that the forecast system cannot be 
optimized for managing climate-related risks without close interaction between 
forecasters, sectoral models and end-users, to identify the critical forecast variables and 
relevant aspects of the probability distribution. Thus, the dialog at the core of this 
workshop becomes essential from a climate forecast perspective as well. 
 
Climate indices 
 
Indices have long been created by meteorologists to study regional climate variability 
and large-scale atmospheric teleconnection patterns (Walker and Bliss 1932; Wallace 
and Gutzler 1981). The concept of indices thus forms a natural way to connect 
insurance models with climate forecasts in a quantitative way.  Climate indices range 
from indicators of large-scale see-saw pressure patterns, especially the Southern 
Oscillation and North Atlantic Oscillation, through regional indices of monsoon strength, 
down to indices of local station rainfall. Large-scale indices may be useful in insurance 
when they describe geographical see-saws that allow for the spreading of risk (see topic 
paper #7); regional indices such as the All-India rainfall can characterize aggregate 
conditions over India, even when the monsoon is typically associated with droughts in 
some regions and floods in others. In cases where a single spatially-coherent 
atmospheric phenomenon controls a rainfall season, an index can be used to 
characterize the potentially predictable component, and to quantify local deviations from 
it. For example, recent studies have shown that the monsoons over the Philippines and 
Indonesia contain large-scale spatially-coherent climate signals in onset-date (Moron et 
al., 2008b,c). These signals are substantially related to ENSO, and thus partially 
predictable, while the nature of post-onset rainfall has been found to be much less so. 
At local scale, these signals are variously contaminated by small-scale unpredictable 
noise that is essential to quantify. An ENSO index based insurance for floods has been 
proposed for Peru (Khalil et al., 2007). 
 
Linking seasonal forecasts with index insurance 
 
Climate indices can be classified according to their predictability, and their associations 
with local, regional, and large-scale weather and climate, see Table 1. Quantitative 
treatment requires both aspects to be characterized using probabilistic models. 
Predictability and current forecastability must ultimately be described in terms of the full 
probability density function, conditional on the forecasts. Several decades worth of 
forecasts made retrospectively are required to construct such products, and to ensure 
that they are properly calibrated.  
 
Given forecasts and an index insurance scheme, it is a daunting technical task to reflect 
all of the information in the forecast in the insurance package, both to fully utilize the 
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forecast and to prevent it from undermining the insurance.  It is likely that rainfall 
simulation (see topic paper # 5) is the fundamental tool to connect these two pieces.  If 
rainfall simulators are trained including forecasts as conditioning variables, then the 
resulting rainfall simulations could be generated for different forecasts.  Contract design 
optimization and pricing could then be performed on the forecast-modified simulations 
to quantitatively capture the forecast in insurance contracts and pricing.  Several 
approaches have been explored for conditioning stochastic daily rainfall simulation on 
seasonal forecasts, including: (1) stochastic disaggregation of monthly GCM rainfall 
(Hansen and Ines, 2005); (2) K-nearest neighbor resampling of observed daily rainfall 
according to GCM simulated daily circulation fields (Moron et al., 2008a); (3) 
conditioning of stochastic weather generator parameters on GCM output (Wilks, 2002); 
(4) non-homogeneous hidden Markov models (Robertson et al., 2004, 2006).   
 
Different strategies might be developed to address the issue of seasonal forecasts, 
depending on the ability of clients to respond to the information in seasonal forecasts. If 
clients have no potential for improved activities in response to forecasts, the strategies 
include closing contract sales before forecasts are available, multiple year contracts, or 
selling options on the right to purchase the insurance. If the forecasts have information 
that could allow small-scale farmers to make better decisions, then other strategies 
might be appropriate. The insurance package could be built to take advantage of the 
forecast information, encouraging a farmer to take advantage of more profitable options 
when climate risks are lower, while using forecasts of bad years to provide incentives 
for more protective activities to prevent losses. When credit is connected to the 
insurance through an insurance–loan package (as for example in Malawi), the bundle 
could be designed to provide financial resources for the production package that are 
appropriate for the forecast, while still providing insurance protection in case the 
anticipated weather does not occur. 
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Table 
 

Climate index Spatial scale Temporal range Predictabiity 

ENSO (SOI, Nino-
SST, MEI) 

near-global seasonal-
interannual 

relatively high 

North Atlantic 
Oscillation 

northern 
hemisphere 

all low 

Madden-Julian 
oscillation  

tropics intra-seasonal moderate 

Indian summer 
monsoon rainfall 

India seasonal-
interannual 

low 

Indonesian 
monsoon onset 

Indonesia seasonal-
interannual 

high 

 
Table 1: Examples of climate indices. 
 
 
Figure 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Gross margins for the ENSO-scaled ENSO-scaled and fixed insurance  
pricing packages using simulated yields in a hypothetical farm that plants only the  
hybrid maize given by the bundled scheme.  Shading shows La Niña years. 
 
 
 


