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Scaling up insurance programs both in space and time would expand risk-spreading 
opportunities at the insurance and reinsurance level. Spatial scale up would allow to pool 
together contracts from different areas with anticorrelated or non-correlated seasonal 
climate signals, thus reducing the cost of insurance programs. Scaling up in time 
translates into intertemporal risk spreading strategies using climate proxies and forecasts 
to design insurance (reinsurance) contracts in (between) regions with observed 
interannual climate variability patterns. By reducing potential losses over time, 
geographic and intertemporal risk spreading through insurance and reinsurance is 
potentially valuable for national (or regional) adaptation and mitigation planning to cope 
with climate variability and change. 

 
At this stage, current precipitation-indexed insurance programs are exploring the 

use of climate proxies (e.g. ENSO indexes) however they do not actively use forecasts in 
their contract designs. However, interannual climate variability is an important 
component in modulating the rainfall regime in several regions of the world and the 
possible use of proxies and forecasts is receiving more and more attention. The available 
literature on the potential integration of seasonal forecasts in index-based weather 
insurance schemes is still very limited. Mjelde and Hill (1999) explored the farm value of 
ENSO-based forecasts in the context of common crop insurance contracts. Cabrera et al. 
(2006) studied the interactions between conventional crop insurance and ENSO-based 
climate information for increasing farm income stability in a hypothetical Florida farm, 
and concluded that for high risk-averse farmers the best insurance strategy depends on 
the ENSO phase. ENSO indexes have also been explored for use as proxies of extreme 
rainfall in one district of Peru` (Khalil et al., 2007). Index insurance for droughts are 
being applied to Millennium Village locations, as port of the Millennium Villages 
Project, providing results in a variety of agroecological and climatic zones in Africa.  

 
In collaboration with IIASA Risk and Vulnerability Group we developed an 

exploratory exercise to study the potential for integrating forecasts in indexed-insurance 
contracts for regions with opposite climate patterns. In our exercise we analyzed payouts 
associated to contracts for maize, with respect to ENSO index NIÑO 3.4, in Malawi, 
Kenya and Tanzania. ENSO signals, generated in the Pacific basin, are an important 
factor in determining inter-annual precipitation variability in Southern and Eastern Africa 
both directly via an atmospheric bridge – atmospheric teleconnection – (Glantz et al. 
1991; Wallace et al. 1998) and indirectly, via the response of the Indian and the Atlantic 
Oceans (Klein et al. 1999; Alexander et al. 2002). Ropelewski and Halpert (1987, 1989) 
suggested two areas of ENSO related precipitation effects: equatorial eastern Africa 
(which includes Kenya and Tanzania) and south-eastern Africa (including Malawi). A 

                                                        

1 We are very grateful to Chat Ropelewsky, Alessandra Giannini and Sarah Abdelrahim for their comments 
and contributions to this preliminary paper. 



  2 

bipolar precipitation pattern is associated to these two regions: la Niña events are 
associated with dry climate in eastern Africa and wet climate in Southern Africa. In other 
words, la Niña phase (also called Cold Episode) increases the likelihood for stronger and 
more frequent storms in Southern Africa, and is thus associated with an increased 
probability for above normal rainfall in that season. During El Niño (or Warm Episode) 
the precipitation dipole is inverted (Ropelewski and Halpert, 1989). 

 
As a first step of our experiment we simulated possible payouts using historical 

precipitations data and analyzed the differences between years with different ENSO 
states – from 1961 to 2005. The results obtained from historical precipitation data 
indicate that more abundant rainfalls reduce payouts and the risk of loan default during 
La Niña in Kenya and Malawi, during El Niño in Tanzania. Figure 1 helps to illustrate 
our simulation in the case of Malawi. The three graphs report the occurrence and 
estimated value of simulated payouts (vertical axis – the corresponding unit of 
measurement is the Malawi currency, Kwacha) over time (horizontal axis) for three 
villages: Kasungu, Lilongwe and Chitedze. The vertical colored bands indicate the ENSO 
state associated to each payout with pink, blue and green indicating respectively La Niña, 
El Niño and neutral years.  

 
Fig 1.  Occurrence of payouts (estimated in Malawi currency on the vertical axis) in three Malawi villages, 

for the period 1962-2005. The vertical colored bands indicate the ENSO state associated to each payout 
with pink, blue and green indicating respectively La Niña, El Niño and neutral years (Vicarelli, 2007). 

 

 

 

Annex VI a 

Kasungu: 

 

  El Nino La Nina Neutral All 

Mean Pay 781.88 72.00 851.14 566.80 

VaR, payout 99th percentile 7882.2 939.6 8209.08 8883.9 

Insurance Price (loading 6.5%) 1243.40 128.39 1329.41 1107.41 

Insurance Price (loading 6.0%) 1207.89 124.06 1292.62 1065.83 

Insurance Rate 0.1342 0.0138 0.1436 0.1184 

Number of Payments 3 1 2 6 

Number of Years 16 15 14 45 

Pay Frequency 0.19 0.07 0.14 0.13 

     

     

max liability  9000 9000 9000 9000 

     

  El Nino La Nina Neutral All 

Insurance Price fixed 702.90 702.90 702.90 702.90 

Insurance Rate 0.1342 0.0138 0.1436 0.1184 

Max Liability 5237.30 50993.91 4894.02 5935.40 

Loan 4107.68 39995.22 3838.44 4655.21 

Interest 1129.61 10998.69 1055.57 1280.18 

Input budget 3404.78 39292.32 3135.54 3952.31 

Input budget weight 0.86 9.94 0.79 1.00 
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Nkhotakota 

 

  El Nino La Nina Neutral All 

Mean Pay 646.70 574.91 626.35 616.44 

VaR, payout 99th percentile 7342.568 4303.1455 6103.289 7657.527 

Insurance Price (loading 6.5%) 1081.94 817.24 982.35 1074.11 

Insurance Price (loading 6.0%) 1048.46 798.60 954.96 1038.90 

Insurance Rate 0.1165 0.0887 0.1061 0.1154 

Number of Payments 3 4 3 10 

Number of Years 16 15 14 45 

Pay Frequency 0.19 0.27 0.21 0.22 

     

     

max liability  9000 9000 9000 9000 

     

  El Nino La Nina Neutral All 

Insurance Price fixed 702.90 702.90 702.90 702.90 

Insurance Rate 0.1165 0.0887 0.1061 0.1154 

Max Liability 6033.73 7921.46 6624.44 6089.20 

Loan 4732.34 6212.91 5195.64 4775.84 

Interest 1301.39 1708.55 1428.80 1313.36 

Input budget 4029.44 5510.01 4492.74 4072.94 

Input budget weight 0.99 1.35 1.10 1.00 
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Annex VI a 

Lilongwe: 

 

  El Nino La Nina Neutral All 

Mean Pay 971.44 130.20 536.14 555.60 

VaR, payout 99th percentile 5040.9 1679.58 3294.45 4764.24 

Insurance Price (loading 6.5%) 1235.95 230.91 715.43 829.16 

Insurance Price (loading 6.0%) 1215.61 223.16 701.64 808.12 

Insurance Rate 0.1351 0.0248 0.0780 0.0898 

Number of Payments 7 1 4 12 

Number of Years 16 15 14 45 

Pay Frequency 0.44 0.07 0.29 0.27 

     
     
max liability  9000 9000 9000 9000 
     

  El Nino La Nina Neutral All 

Insurance Price fixed 702.90 702.90 702.90 702.90 

Insurance Rate 0.1351 0.0248 0.0780 0.0898 

Max Liability 5204.07 28347.47 9016.15 7828.18 

Loan 4081.63 22233.31 7071.49 6139.75 

Interest 1122.45 6114.16 1944.66 1688.43 

Input budget 3378.73 21530.41 6368.59 5436.85 

Input budget weight 0.62 3.96 1.17 1.00 
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Chitedze: 

 

  El Nino La Nina Neutral All 

Mean Pay 764.67 25.89 312.63 377.78 

VaR, payout 99th percentile 3224.842 334.0412 3422.265 3630.689 

Insurance Price (loading 6.5%) 924.58 45.92 514.76 589.22 

Insurance Price (loading 6.0%) 912.28 44.38 499.21 572.95 

Insurance Rate 0.1014 0.0049 0.0555 0.0637 

Number of Payments 8 1 2 11 

Number of Years 16 15 14 45 

Pay Frequency 0.50 0.07 0.14 0.24 

     

     

max liability  9000 9000 9000 9000 

     

  El Nino La Nina Neutral All 

Insurance Price fixed 702.90 702.90 702.90 702.90 

Insurance Rate 0.1014 0.0049 0.0555 0.0637 

Max Liability 6934.37 142532.83 12672.25 11041.23 

Loan 5438.72 111790.46 9939.02 8659.79 

Interest 1495.65 30742.38 2733.23 2381.44 

Input budget 4735.82 111087.56 9236.12 7956.89 

Input budget weight 0.60 13.96 1.16 1.00 
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As shown by the three graphs, in any of these villages in Malawi by far most 

payout years are associated with El Nino but not all El Nino years are payout years at any 
of the villages. In summary, of the 29 payouts for all of the villages in the study, 19 
payouts were associated with el Nino, only, roughly, 1/3 as many (7) with neutral 
conditions and only 1/6 as many (3) with la Nina. Further, payouts are not just more 
frequent in association to El Nino but the estimated value is also higher. It is also 
interesting to observe that, despite the proximity between villages, not all payout years 
occur in association with the same El Nino years. Despite the short historical 
precipitation record, these results are quite interesting and deserve further analysis from 
an insurance perspective. 
 

The relatively short precipitation time series available represents the major 
limitation of this preliminary simulation. So, as a second step, we chose to apply the 
Monte Carlo method in order to analyze the statistical distribution of payouts using a 
larger sample of precipitation data. More specifically, we modeled precipitations by a 
gamma distribution the parameters of which were deducted from the historical 
precipitations. Then, the Monte Carlo approach allowed us to extract large random 
samples from the precipitation distribution. Finally, we used the simulated precipitations 
distributions in each location to calculate the mean and variance of payouts associated to 
different ENSO states. The results of the Monte Carlo simulations confirm our 
preliminary findings for Kenya and Tanzania but they are more ambiguous for Malawi 
(Vicarelli, 2007). 

 
This exploratory study illustrates that despite the technical constraints associated 

to up-scaling over different regions and over multiple time periods (e.g. taking into 
considerations interannual climate variability and forecasts) new opportunities emerge. 
 

Let’s focus first on the challenges to be faced. A first group of constraints 
includes limitations related to climate data, simulations and forecasts: (i) larger scales and 
the use of climate proxies translate into the necessity for reliable climate data distributed 
over large areas. However, sparse stations and short data series (especially in developing 
countries) can compromise reliability of rainfall measures. This is an intrinsic limitation 
in the simulation of rainfall distributions in both space and time; (ii) spatial and temporal 
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scale up is not feasible for heterogeneous regions characterized by several microclimates; 
(iii) scaling up insurance contracts in time up to 10-30 years allows integrating climate 
variability in the insurance/reinsurance design, however, the uncertainty related to 
seasonal forecasts could be a limitation to insurance planning; (iv) longer timescales also 
require taking into account precipitation and temperature trends associated to our 
changing climate. However, disagreement between models in simulating local trends 
represents a further source of uncertainty in insurance planning and contract design; (v) 
even when the climate data is satisfactory and the forecast is solid, the very timing of the 
forecast might not be compatible (thus useful) with respect to the agricultural calendars, 
planning decisions, and thus with the insurance contract calendar. 

 
The second group of limitations is related to the existing economic and 

institutional framework especially in developing countries where index-insurance 
projects are currently under implementation. (i) Local commercial banks are not always 
able to participate as source of funding for large scale microfinance or microinsurance 
programs (volatility, illiquidity of local currencies). (ii) Linking micro-insurance 
contracts in different countries in an effort to spread risk geographically might not be 
feasible because of different currencies in use and/or regulatory systems. Moreover, the 
very risk of political instability, especially in developing nations, is a further major 
constraint in the implementation of insurance programs. (iii) Last but not least, 
institutional mediators for “regional risk-sharing” planning are still missing in the 
international framework. Another challenge is certainly represented by cultural 
differences in attitudes towards risk for different peoples when designing and 
harmonizing risk management strategies at large geographic scales. 

 
Besides these challenges new opportunities for innovative tools and strategies 

emerge, representing also new directions for research. From a technical point of view, by 
scaling up insurance programs, the use of climate proxies and remote sensing, for both 
rainfall and vegetation, might help to overcome the problems related to sparse stations 
and short data series. The use and applications of such tools is just at a pioneering stage 
and needs to be refined. From a strategic planning and institutional point of view: (i) 
while shorter time scale and local spatial scale are difficult to model, timescales of 10-30 
years over large areas are more relevant for mitigation planning at a regional level and 
could increase the ability of insurance markets to intertemporally diversify risk; (ii) 
geographic and intertemporal risk spreading might translate into a scaling up of the 
institutions involved; national governments could emerge as public partners of the 
insurance sector in developing regional strategies to reduce risk exposure; (iii) forms of 
regional cooperation between neighboring nations could also take shape in an effort to 
maximize risk spreading; (iv) and finally from a regulatory perspective, new challenges 
but also new opportunities for micro-insurance regulation and supervision institutions 
would arise.  
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