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Climate exerts a profound influence on the lives of rural populations, particularly the rural poor, who 
depend on agriculture for livelihood and sustenance, who are unprotected against climate-related diseases, 
who lack secure access to water and food, and who are vulnerable to hydrometeorological hazard.  
Climate shocks such as drought and flooding lead not only to loss of life, but also long-term loss of 
livelihood through loss of productive assets, impaired health and destroyed infrastructure.  The 
uncertainty associated with climate variability is a disincentive to investment and adoption of agricultural 
technologies and market opportunities, prompting the risk-averse farmer to favor precautionary strategies 
that buffer against climatic extremes over activities that are more profitable on average.  Weather index 
insurance is one of several promising interventions for overcoming the negative impacts of climate risk 
on rural livelihoods and food security.  

The field of Agricultural Systems began with early efforts (1960s-1970s) to model response of crop and 
livestock systems to the environment and to model interactions between farmer decision making and 
biological and ecological processes in farming systems.  Since then, it has evolved into an integrative, 
trans-disciplinary approach to dealing with the complexities of agriculture and its relationship with the 
natural and human environment across scales.  Agricultural systems methodology and insights have much 
to offer to the challenges identified for scaling up applications of weather index insurance for agricultural 
development and food security (Barrett et al., 2007).  We discuss the potential role of agricultural systems 
modeling in three areas: (a) designing indices that manage basis risk in its various forms; (b) identifying 
and quantifying the right risk, and (c) understanding and evaluating potential incentives, management 
responses, and benefits associated with index insurance and its interaction with advance information. 

1. Crop-Weather Models: from Statistics to Water Satisfaction to Processes 
Seasonal averages of single climate variables such as rainfall accumulation often correlate poorly with 
crop yield, even in environments that are strongly water limited.  Crop production is a function of 
dynamic, nonlinear interactions between weather, soil water and nutrient dynamics, management, and the 
physiology of the crop.  The same amount of rainfall will have different impacts on the crop growth and 
final yield depending on the characteristics of wet and dry spells and on the crop stage when a deficit 
occurs.  As a simple example, spring wheat in Moree (Northern NSW, Australia) is grown as a dryland 
crop in winter.  ENSO 
contributes to extreme 
rainfall variability with 
seasonal (May to 
August) totals varying 
from near zero to more 
than 400mm.  District 
yields correlate weakly 
with seasonal rainfall 
(Fig. 1a, R2 = 0.22).  A 
simple district yield 
model that takes soil 
water balance and 
antecedent soil 
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Figure 1. Seasonal rainfall (May-August) at Moree, NSW, Australia against (a) 
district wheat yields from 1975 to 2001 and (b) simulated wheat yields for the 
same period. 



 2 

moisture into account (Potgieter et al., 2002, 2005), improves the correlations considerably (Fig. 1b, R2 = 
0.46).  Parallel developments in agricultural systems modeling and agrometeorology have greatly 
improved our ability to model the response of crops and forage to weather.  

In contrast to statistical modeling, agricultural systems 
models establish a functional relationship between 
causes and effects based on understanding of 
mechanisms.  The early evolution of crop modeling in 
the 1960s and 1970s paralleled levels of production 
(perhaps more appropriately, “levels of analysis”) 
defined by the factors that limit production (Fig. 2, 
Rabbinge 1993).  Potential production is limited only 
by crop genetic characteristics, solar radiation, 
temperature, day length and CO2.  Yields decrease from 
potential, to water-limited, to N-limited, to actual 
production because each successive level involves 
additional constraints.  Models capable of simulating 
potential production processes (i.e., photosynthesis, 
respiration, partitioning and phenology) were developed 
first, then expanded to incorporate models of the 
soil water balance and the physiology of water 
stress response, and later N dynamics and use.  
Complexity and data requirements grow as crop 
models incorporate additional processes.  With 
increasing complexity, there is a tradeoff between 
the reduction of uncertainty from capturing 
additional determinants of actual production, and 
the additional uncertainty from the need to 
estimate increasing numbers of parameters (Fig. 
3).  The optimum level of complexity depends on 
the determinants of yield and the uncertainty of 
the parameters required for the particular context 
and scale.  No model simulates the full range of 
determinants of actual production, but there has 
been progress in addressing some relevant 
determinants beyond water and nitrogen. 

Agrometeorology took a pragmatic approach to the goal of improving prediction of water-limited crop 
yields.  The FAO water requirement satisfaction index (WRSI) and its variants incorporate a simple 
dynamic soil water balance model, fixed crop development calendar, and seasonally-integrated ratio of 
actual (limited by the smaller of evaporative demand or supply in soil) to potential evapotranspiration 
(Frère and Popov, 1979, 1986; Doorenbos and Kassam, 1979).  Yield loss due to water stress can be 
estimated by weighting this ratio by crop sensitivity during the various growth stages.  In this form, WRSI 
can be considered an index of seasonal rainfall that is integrated in a manner that is consistent with how 
crops respond instead of by an arbitrary summation.  The WRSI concept attempts to capture the water-
limited level of production without modeling potential production.  Since WRSI is related to proportional 
yield reduction due to water stress, yield estimation requires an independent estimate of potential yield.2  
The WRSI concept is embedded in process-oriented models of water-limited crop production that use 

                                                   
2“Potential yield” in this case refers to yield without water stress, and is not equivalent to the potential production 
concept in agricultural systems modeling (Rabbinge, 1993). 

Figure 2. Levels of crop production (after 
Rabbinge, 1993). 

Figure 3. Stylized relationship between model 
complexity and uncertainty due to model structure 
and parameters. 
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evapotranspiration ratio to modify processes such as carbon assimilation, partitioning and leaf expansion.  
A convention of calculating WRSI on a dekadal (10-day) time step, adopted in the 1970s to accommodate 
manual calculation and data storage constraints, is still widely used but no longer justified.  Calculating 
WRSI on a daily time step can presumably better capture water stress from dry spells within a dekad and 
hence better predict yield response to rainfall particularly under conditions of low soil water-holding 
capacity and high evaporative demand, but we are not aware of efforts to test this assumption. 

2. Agricultural Models as Insurable Indices of Production and Economic Loss? 
Basis risk – the gap between an insured index and the risk it is meant to target – is regarded as the price 
paid for removing moral hazard, adverse selection and their resulting transaction costs as barriers to 
insuring vulnerable farmers against climate-related risk.  Basis risk results from (a) the imperfect 
relationship between the index and the targeted loss, (b) the differing scales of risk faced by insurers (at 
an aggregate scale) and clients (e.g., farmers, input providers, at a local scale), and (c) distance from a 
meteorological station.  Correlation of an index with the targeted loss is crucial if index insurance is to be 
an effective alternative to indemnity insurance, but transparency and acceptability to the clients and other 
stakeholders, vulnerability to manipulation, data requirements, and robustness in the face of sparse data 
are also important considerations.  Can an agricultural simulation model serve as an insurable index of 
production or economic loss?  How would it compare to alternatives such as cumulative rainfall during 
portions of the growing season, joint precipitation and temperature thresholds, official area-average yield 
statistics, or remotely-sensed vegetation (e.g., NDVI)?   The suitability of area-averaged yields depends 
critically on the quality of official production statistics and vulnerability of the estimation process to 
manipulation.  A cursory look at country-level yield statistics in FAOSTAT reveals widespread problems 
in many developing countries.  

A properly used agricultural simulation model will generally have lower basis risk than precipitation or 
temperature averaged over portions of the growing season.  It will also be more readily extrapolated than 
a statistical relationship between weather and yields.  While the reported performance of crop models is 
quite variable, coefficients of determination (R2) on the order of 0.7-0.9 between observed and simulated 
yields can be expected when (a) weather data and soil hydrological properties are measured where yields 
are measured; (b) cultivar parameters are measured experimentally or calibrated with adequate data; (c) 
the observed yields vary substantially in response to some combination of genetics, water availability and 
nitrogen supply; and (d) either production is managed at close to the attainable level, or damage from 
other stresses such as pests or disease is measured and incorporated into the simulation.  “Proper use” 
assumes that the model is used with understanding of its capabilities and limitations, understanding of the 
system being modeled, adequate consideration of the levels of accuracy needed, evaluation of model 
performance for the given application, and appropriate calibration if needed.  We also assume that the 
choice of model is appropriate considering the balance between adequacy to capture the important 
determinants of yield, and data availability and uncertainty issues associated with model complexity. 

Remote sensing vegetation products such as NDVI are considered an alternative to weather indices for 
agriculture and food security-related insurance applications.  Food security institutions such as FAO, 
WFP and FEWSNET treat rainfall (raw or integrated into WRSI) and NDVI as independent, 
complementary pieces of information.  With advances in model data assimilation, an alternative is to 
optimally integrate remotely sensed vegetation indices into agricultural systems models to improve 
accuracy.  Updating crop model state variables within the simulation period with sequential data 
assimilation (e.g., Evensen, 1994) minimizes the cumulative effects of model structural uncertainty, 
initial/boundary conditions and data input errors in the simulation of crop growth, and hence yield.  We 
expect that a model-based index that integrates multiple sources of information, including satellite remote 
sensing, will often provide the best information about weather-related production losses and hence result 
in the lowest basis risk. 
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Crop-weather models are typically developed and tested for the scale of a homogeneous plot.  Yet the plot 
is not necessarily the scale of risk that is most relevant to the insurer or lender.  Insurance for food crisis 
management is concerned with weather impacts at aggregate scales that incorporate considerable 
heterogeneity.  If heterogeneity of the environment (soils, climate) or management is not sampled 
adequately, a model will produce poor and potentially biased simulations of aggregate production or 
average yields.  Methods for reducing error when simulating at an aggregate scale (reviewed in Hansen 
and Jones, 2000) include sampling input variability in geographic or probability space, or by calibrating 
either model inputs or outputs.  

Relative to a purely meteorological index, using a process-based model as an index would increase data 
requirements and the need for technical expertise or training.  Difficulty in understanding a complex 
model could be an obstacle to acceptance if it affects transparency and allows at least the perception of 
vulnerability to manipulation.  Although an agricultural model is more complex than cumulative rainfall, 
using an integrated estimate of the target loss as an index would result in a simpler and perhaps more 
transparent contract than rainfall totals for multiple periods or combinations of precipitation and 
temperature.  Restricting an index to time-averaged meteorological variables shifts the responsibility for 
relating them to production-related losses onto the intuition of the various stakeholders.  Quite 
complicated contracts can result if local experts impose ad-hoc adjustments, such as upper limits to 
dekadal rainfall to account for runoff.  We propose that the decision about choice of an index for 
agricultural or food security applications should recognize and seek to balance the tradeoffs between basis 
risk and the communication challenges associated with a given model, and not assume either that 
communication challenges are insurmountable or that basis risk is trivial. 

3. Quantifying the Right Risk 
For index insurance to be effective, it must target the right risk and the index must capture a sufficient 
portion of that risk.  Pricing depends on quantifying that risk.  Risk for agriculture is often classified as 
production risk (i.e., uncertain crop yields or livestock production), market or price risk (i.e., uncertainty 
in commodity and input prices, including influence from currency exchange rates), institutional risk (i.e., 
risk of unfavorable changes in institutional services and policy at various levels), business or income risk 
(which aggregates production, market and institutional risk), and financial risk (resulting from the degree 
and terms of borrowing).  This classification overlooks consumption risk – a more important measure in 
subsistence-oriented agriculture.  

Weather is most closely related to the production component of risk.  Weather index insurance initiatives 
we are aware of emphasize crop yields – typically for a single crop – or the productivity or mortality of 
livestock.  A standard method to characterize production risk is to run a suitable, well-validated crop, 
forage or livestock model with many realizations of weather data either from historic observations or a 
stochastic weather model parameterized from observations.  This simple procedure carries a few potential 
pitfalls beyond the general warning about misuse of agricultural models.  First, many stochastic weather 
generators systematically under-represent year-to-year variability (Kats and Parlange, 1998; Wilks, 1999).  
Second, using many realizations from a stochastic weather model may mask an inadequate sample of 
observed weather (used to parameterize the weather generator), giving a false sense of confidence in the 
resulting distribution.  Third, if initial conditions (e.g., soil water or nutrient content) are not reset prior to 
simulation with each weather data sample, the resulting distribution will not represent the climate 
component of risk.  Fourth, established methods assume that weather risk is stationary (i.e., central 
tendency, dispersion and other statistics do not change significantly over time), which does not hold in the 
face of (multi−)decadal climate variability and anthropogenic climate change.  Finally, the scale of the 
model and the targeted risk must be consistent, as variability of crop or forage yields tend to decrease 
with increasing scale of aggregation (Hansen and Jones, 2000). 

The yield distribution of a given crop is not necessarily the best measure of the climate-related risk that a 
farm household faces.  First, market risk adds a level of variability and uncertainty.  Yet where local 
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markets are weakly integrated with the regional or global economy, the yields and prices of a given crop 
tend to move in opposite directions in response to climate variations, and gross margins (i.e., income from 
sales minus variable costs of production) may be more stable than yields of the crop.  Capturing market 
response to weather variability through economic equilibrium modeling is feasible but daunting.  A 
simpler approach incorporates a stochastic price model (e.g., Fereyra et al., 2001) conditioned if 
necessary on yields.  Second, because income from different farm and possibly non-farm enterprises is 
imperfectly correlated, the economic (business or consumption) risk that a farm household faces is often 
quite different than crop yield variability would suggest.  The more diversified the household’s livelihood 
system, the less it is affected by weather impacts on any particular farm enterprise.  Agricultural insurance 
programs tend to target a single crop or livestock commodity, but the risk covered may be only weakly 
related to the economic risk farmers face.  Realistic characterization of climate-related risk within a 
diversified farming system requires analysis at the farm level, which adds a level of complexity, and 
sensitivity to heterogeneity of resource endowment and the physical environment.  

4. Evaluating Management Incentives and Responses 
As with any development intervention, ex-ante analysis of the potential impacts of index insurance can 
improve the design and targeting of packages with the greatest potential benefit and lowest risk of 
negative consequences.  Where index insurance seeks to remove barriers to access to credit and 
production technology, agricultural systems modeling can be used to estimate the potential benefits of the 
improved access to resources, and to estimate optimum levels of production inputs and hence target levels 
of credit.  Realistic evaluation may require analysis at the farm level informed by in-depth understanding 
of farmers’ goals, resources and constraints.  Integration with market-level analysis may be needed if 
insurance will be implemented on a scale that is sufficient to impact prices of agricultural commodities or 
inputs.  Yet simpler enterprise-level analyses may still yield useful insights.  

Advance information in the form of seasonal climate forecasts, often seen as a threat to weather index 
insurance, appears to have potential to enhance the benefits of insurance if the forecast information is 
incorporated into the contract (Carriquiry and Osgood, 2008).  The potential to incorporate seasonal 
climate forecast information into contract design and pricing is raising particular interest in evaluating the 
implicit hypothesis that forecast information can be transmitted through market (insurance or credit) 
prices in a manner that is consistent with the way farmers would respond to that information (i.e., 
intensifying production under anticipated favorable climatic conditions while being more conservative 
under anticipated adverse conditions).  Model-based methods used to estimate the potential value of 
seasonal climate forecasts for agricultural management (reviewed by Meza et al., 2007) are directly 
applicable to evaluating management responses and resulting shifts in demand for credit in response to 
forecast information. 

In the context of an ongoing pilot bundled insurance-credit scheme for farmers in Malawi, Osgood et al. 
(submitted) illustrate how basing insurance premium on climate forecasts in the form of ENSO phase 
might improve the income of farmers without jeopardizing the insurer.  Their analyses assumed that 
farmers would respond to changes in credit supply due to forecast-based pricing by adjusting the area 
under a fixed intensified maize technology package.  Figure 4 illustrates the logical next step to assess 
how forecasts would change optimum input levels and hence the demand for credit under more realistic 
assumptions.  The profit-maximizing combination of seed and N fertilizer inputs for maize vary with 
ENSO conditions.  A risk-averse farmer would likely select lower input levels, but would still benefit 
from intensifying management during climatically-favorable neutral years while remaining conservative 
with borrowing and input use during adverse El Niño years.  Such analyses (ongoing) provide insight into 
the influence of climate on demand for credit.  However, the design of insurance packages to support 
farm management that exploits advanced information about climatic conditions should be informed by 
more complete farm-level risk analysis that considers the full range of options, and accounts realistically 
for farmers’ goals, risk attitudes, constraints, and must therefore involve farmer participation. 
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