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Abstract 

This study examines space-time characteristics of seasonal rainfall predictability in a 

tropical region, by analyzing observed data and model simulations over Senegal. 

Predictability is analyzed in terms of the spatial coherence of observed interannual 

variability at the station scale, and within-ensemble coherence of general circulation 

model (GCM) simulations with observed sea surface temperatures (SSTs) prescribed.  

Seasonal-mean rainfall anomalies are decomposed in terms of daily rainfall frequency, 

and daily mean intensity. The observed spatial coherence is computed from a 13-station 

network of daily rainfall during the July–September season 1961–98, in terms of (a) 

interannual variability of a standardized anomaly index (i.e. the average of the 

normalized anomalies of each station), (b) the external variance (i.e. the fraction of 

common variance amongst stations) and, (c) the number of spatio-temporal degrees of 

freedom.  

 

Spatial coherence of interannual anomalies across stations is found to be much stronger 

for seasonal rainfall amount and daily occurrence frequency, compared to daily mean 

intensity of rainfall. Combinatorial analysis of the station observations suggests that, for 

occurrence and seasonal amount, the empirical number of spatial degrees of freedom is 

largely insensitive to the number of stations considered, and is between 3 and 4 for 

Senegal. For daily mean intensity, by contrast, each station is found to convey almost 

independent information, and the number of degrees of freedom would be expected to 

increase for a denser network of stations. The GCM estimates of potential predictability 

and skill associated with the SST forcing are found to be remarkably consistent with 
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those inferred from the observed spatial coherence: there is a moderate-to-strong skill at 

reproducing the interannual variations of seasonal amounts and rainfall occurrence 

whereas the skill is weak for the mean intensity of rainfall. Over Senegal during July-

September, we conclude that (a) regional-scale seasonal amount and rainfall occurrence 

frequency are predictable from SST, (b) daily mean intensity of rainfall is spatially 

incoherent and largely unpredictable at regional scale, and (c) point-score estimates of 

seasonal rainfall predictability and skill are subject to large sampling variability. 
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1. Introduction  

Potential users of seasonal to interannual climate predictions are often interested in 

forecasts of seasonal rainfall totals at the local scale. In addition, within-season rainfall 

characteristics, such as rainfall occurrence frequency and intensity can be of particular 

concern; the frequency and length of dry-spells, for example, are important to agriculture 

(Ingram et al., 2002). Seasonal-mean rainfall can be decomposed as the product of daily 

rainfall occurrence frequency and average daily rainfall intensity. Seasonal predictability 

of seasonal amounts may thus translate into predictability of occurrence and mean 

intensity, with useful consequences for agricultural planning. On the other hand, the 

spatial scales of the processes determining rainfall occurrence and intensity may be 

different, with important implications for the skill of seasonal forecasts at the local scale. 

Indeed, evidence from downscaled general circulation model (GCM) simulations of 

rainfall over Queensland, Australia, suggests that intensity is much less predictable than 

rainfall occurrence frequency or seasonal amount (Robertson et al. 2005). For the Sahel 

region of West Africa, previous studies have found that the main source of the seasonal 

rainfall variability is associated with the variability in the number of rainy events rather 

than the magnitude of the events (D’Amato and Lebel, 1998; Laurent et al., 1998). Le 

Barbe and Lebel (1997) and Le Barbe et al. (2002) have shown, that in the central Sahel, 

most of the rainfall reduction for the period 1970–89 is explained by a decrease in the 

number of rain events, whereas the average storm did not vary much.  

 

The goal of this paper is to better understand seasonal predictability of rainfall amount, 

occurrence and mean intensity at the station level, using observed daily rainfall from 13 
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stations over Senegal, together with an ensemble of atmospheric GCM simulations in 

which observed sea surface temperatures (SSTs) are prescribed.  Potential predictability 

is often assessed using ensembles of GCM simulations, run from slightly differing initial 

conditions, but with identical SST boundary conditions prescribed. The common 

response among ensemble members is then compared to the spread between them to 

estimate the signal-to-noise ratio (S/N). This is often estimated in terms of ensemble-

mean versus within-ensemble variance (Rowell et al., 1995; Zwiers, 1996; Rowell, 1998) 

of seasonal averages, or by identifying spatial patterns that maximize the S/N (Venzke et 

al., 1999). A large S/N is characterized by large coherence between GCM ensemble 

members.  

 

An analogous approach can be taken to analyze an observed daily rainfall network, over a 

relatively small, homogenous region. In this case it is assumed that the stations are 

situated far enough apart to be independent of each other, as far as local processes are 

concerned, but that all experience the same large-scale climate anomalies. High spatial 

coherence between stations indicates potential predictability in terms of the large-scale 

climate anomalies, which in the case of GCM ensemble averages, may be attributed to 

forcing from SST anomalies. In both cases, actual predictability is contingent on being 

able to predict these “forcing” anomalies, yielding estimates of potential predictability. 

Weak spatial coherence implies small potential predictability, but the converse is not 

necessarily true; for example, the North Atlantic Oscillation is largely unpredictable at 

the seasonal scale (Marshall et al., 2001), yet may lead to high spatial coherence of 

interannual anomalies between stations. 
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The spatial S/N ratio can be considered as a spatial analog of the established temporal 

scale separation into slow (i.e. month to seasonal) climatic “signal” and synoptic-scale 

weather “noise” (Leith, 1974 ; Madden 1976 ; Zwiers 1987). Observational estimates of 

potential predictability have been derived using a “one-way” analysis of variance that 

splits the total variance into a “signal” component, given by the interannual variance of 

the seasonal mean, versus a “noise” component, usually estimated through the spectral 

density function of daily data at nonzero frequencies (Madden, 1976; Zwiers, 1987). The 

spatial coherence of a field can also be quantified by estimating the number of spatial 

degrees of freedom (Fraedrich et al., 1995 ; Bretherton et al., 1999), or by calculating the 

interannual variance of a spatial average of standardized anomalies (Katz and Glantz, 

1986); if the anomalies are uncorrelated, then the interannual variability of their spatial 

average will be small. 

 

In addition to providing an estimate of potential predictability, GCM simulations forced 

by historical SSTs can be used to estimate hindcast skill that would be achieved with a 

perfect forecast of SST (Gates, 1992; Sperber and Palmer, 1996). In order to make GCM 

hindcasts of Senegal seasonal rainfall at the station level, it is necessary to calibrate the 

GCM output, to take into account model biases. In this paper we use a Model Output 

Statistics (MOS) correction, derived from a canonical correlation analysis (CCA) 

between the model field and observed Senegal network of rainfall station, using seasonal- 

average quantities (Ward and Navarra, 1997; Moron et al., 2001). The GCM estimates of 

potential predictability and simulation skill are then compared with those inferred from 

the analysis of observed spatial coherence between rainfall stations over Senegal.  
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The paper proceeds as follows. Section 2 describes the data and section 3 details the 

methods used. The analysis of spatial coherence in the observed station dataset is 

reported in section 4. The link between spatial coherence and potential predictability is 

discussed in section 5. In section 6, we then describe the potential predictability and skill 

of the GCM simulations for Senegal. Conclusions are given in section 6.  

 

2. Data 

a. Station rainfall data 

A 13-station network of observed daily rainfall, obtained from the Direction de la 

Météorologie Nationale (DMN) of Senegal, is used in this study, for the July–September 

(JAS) season, 1961–98. Senegal is relatively flat and vegetation type is the main source 

of landscape heterogeneity across the country. Shrub and tree steppes dominate in the 

north (< 500 mm rainfall), savanna woodlands in the central section (500 – 700 mm), 

with dense savanna and increasing forest toward the humid south. The network includes 

the main “synoptic” stations of Senegal but also three others ones (i.e. Kounghel, 

Diouloulou and Goudiry). Measurements at the former stations are automatic while those 

carried out at the latter ones are done manually. The JAS season receives between 75% of 

the annual rainfall in the south to more than 90% in the north. Figure 1 shows the station 

locations, along with the climatological seasonal amount, occurrence frequency, and 

daily mean intensity on wet days (i.e. seasonal amount divided by the number of wet 

days). The largest values occur in the southwest decreasing northward, consistent with 

the large-scale rainfall pattern associated with the inter-tropical convergence zone (ITCZ) 
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(Camberlin and Diop, 1999). This is associated with a rainy season, which is centered on 

August and is shorter in the north. There is also a secondary west-east rainfall gradient 

from the coast, in the central and northern part of the country (Fig. 1b,c), partly related to 

the coastal influence of the cold Canary current.    

 

The spatial variability of seasonal amount (Fig. 1b) and daily occurrence of rainfall (Fig. 

1c) is larger than that of the daily mean intensity of rainfall (Fig. 1d). The daily mean 

intensity of rainfall (Fig. 1d) should not be confused with the rain rate, that depends 

basically on the nature (i.e. stratiform or convective) of rainfall. In Senegal, as for the 

entire Sahel, most of rainfall is associated with westward moving meso-scale convective 

systems (Laurent et al., 1998; Mathon and Laurent, 2001) embedded in the ITCZ.  In 

consequence, the mean rain rate is high (near 5 mm.h-1 in the Dakar area for 1993-1999 – 

Nzeukou and Sauvageot, 2002 –) and more than 75% of total seasonal rain amount 

typically falls in less than 10 hours, corresponding to the convective part of the squall 

lines (Kebe et al., 2005). Thus, the climatological daily mean intensity plotted in Fig. 1d 

reflects the average duration of rainfall at each station on wet days, together with the 

average rain rate.  

 

It is possible that rainfall occurrence (daily mean intensity) could be under-estimated 

(over-estimated) at the three non-synoptic stations. These stations record fewer very 

small amounts (i.e. daily rain < 1 mm) than the surrounding stations (Fig. 1c) and this 

smaller number of wet days increases their mean intensity (Fig. 1d). For example, 

Diouloulou has only 86 rainy days receiving less than 1 mm while 440 such days are 
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observed in Ziguinchor (Fig. 1a). However, considering a threshold of 1 mm to define 

wet days instead of 0 does not appreciately change the results (not shown). We assume 

that any measurement errors have no reason to be spatially coherent and thus only 

contribute to the noise component of each station’s variability.  

   

b. Simulated rainfall data 

A 24-member ensemble of simulations made with the ECHAM 4.5 atmospheric GCM 

(Roeckner et al., 1996) is analyzed, over the same period, with observed SSTs prescribed. 

Each simulation differs only in its January 1950 initial condition. The model was run at 

T42 (approx 2.8 degree) resolution, and the simulations have been described extensively 

elsewhere (e.g. Gong et al., 2003). Daily simulated rainfall amounts were extracted 

within a window (30°W–0°W, 0°–30°N). Figure 1e displays the mean seasonal rainfall 

amount simulated by the model. The main north-south, and the secondary west-east, 

rainfall gradients are captured reasonably well, although the rainfall is clearly under-

estimated over Senegal, with simulated amounts from < 100 mm in the northwest to > 

700 in the southeast (Fig. 1e). As is typical in GCMs, rainfall occurrence is strongly over-

estimated (not shown). The number of rainy days > 0 mm varies between 70 in the north 

to 92 in the south; this bias is mainly due to very small amounts and considering a 

threshold of 1 mm to define wet days leads to quite a realistic climatology with around 20 

days in the northwest to 70 – 80 in the south (not shown).  

 

3. Methods 

a. Estimation of the spatial coherence between stations 
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Our main hypothesis is that the seasonal averages of rainfall amount (S), occurrence (O) 

and mean intensity (I) at each station can be decomposed into a spatially-uniform 

“signal” and a stochastic spatially-independent “noise”. The “signal” is estimated by the 

spatial coherence amongst the 13-station network computed using three different 

measures: inter-annual variance of the standardized anomaly index (Katz and Glantz, 

1986), “external” variance (Zwiers, 1996 ; Rowell, 1998) and degrees of freedom 

(Fraedrich et al., 1995) of S, O and I matrices. We write the individual station time series 

of S, O and I as xij, where j = 1... M denotes the station, and i = 1... N denotes the year, 

and the MN ! matrices of S, O and I asX . These are firstly normalized to zero mean and 

unit variance 

(1)   
j

jij

ij

xx
x

!

)( "
=#  

where j
x is the long-term time mean and j

! is the interannual standard deviation for 

station j. The SAI is defined as the average of the normalized station time series of 

seasonal averages over the M stations (Katz and Glantz, 1986) ; 

(2)  !
=

"=
M

i

iji x
M

SAI
1

1  

The interannual variance of the SAI is a measure of the spatial coherence since it depends 

on the inter-station correlations ( ij
! ). Substitution into the general expansion for the 

variance of a linear combination of correlated variables (e.g. Hogg and Craig, 1970) gives 

(3)  !)
1

1(
1

]var[
MM

SAI "+=  
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 where !  is the spatial mean of the inter-station correlations. If all correlations are zero, 

then 0=!  and
M

SAI
1

]var[ = ; if all pairs of stations are perfectly correlated, then 1=!  

and 1]var[ =SAI  (Katz and Glantz, 1986). 

 

The var[SAI] estimate is closely related to the definition of “external variance” ratio 

(EVR) used in SST-forced GCM experiments (Zwiers, 1996; Rowell, 1998) discussed in 

section 3b, and defined as; 

(4)  
22

2

INTEXT

EXT
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!!

!

+
=  

Here,  2

EXT
! and 2

INT
! are defined respectively as the “external” variance that is common to 

all stations and the “internal” variance that is associated with differences between 

stations;  
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The empirical EVR and var[SAI] are thus related estimates of the spatial coherence, and 

thus of the amount of common “signal” in the station data. The difference between 

var[SAI] and EVR grows as the part of the internal component of the variance increases 

and/or as the number of stations decreases.   

 

A third measure of inter-dependence amongst stations involves estimating the number of 

independent variables in the network, or degrees of freedom (Der Megredichtian, 1979; 
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Moron, 1994; Fraedrich et al., 1995; Bretherton et al., 1999). The number of degrees of 

freedom (DOF) can be estimated through an eigen-analysis, i.e. empirical orthogonal 

function (EOF) analysis, of the correlation matrix formed from the station seasonal-mean 

time series:  

(6)  
!
=

=
M

i

i
e

M
DOF

1

2

2

, 

where
i
e are the eigenvalues of the correlation matrix. In the limiting case of 1=

i
e  for all 

stations, DOF = M (or 1!= NDOF if N < M) i.e. each station conveys independent 

information and the common “signal” is zero. On the other hand, if a single eigenvalue 

accounts for all variance of the field (= trace of the correlation matrix, that is M), then 

DOF = 1;  i.e. each station conveys the same information equal to the “signal” and the 

noise is zero. In the latter case, the station network can be described by a single EOF. The 

DOF depends on the rank of the station matrix (equal to M here) and its sensitivity to the 

number of stations can be tested by using a combinatorial analysis, in which all possible 

subsets of stations are constructed for M = 2,…,13 (section 4). 

 

The degrees-of-freedom approach is based on two assumptions: that the data are normally 

distributed and that the covariance matrix is known with sufficient accuracy (Bretherton 

et al., 1999). The first assumption can be verified using a Kolmogorov-Smirnov test. For 

the Senegal network, the lowest asymptotic value of the test equals 0.13, 0.23 and 0.12, 

for S, O and I respectively, so that the null-hypothesis of a normal distribution is never 

rejected at the two-sided 90% confidence level. All calculations have been repeated, 

using a Box-Cox transform (Box and Cox, 1964) to pre-whiten the rainfall data, with 



 13 

very similar results (not shown). The second assumption is more difficult to verify. 

Although the station time series are short, the serial correlation of S is always less than 

0.19 at all stations: for O, it exceeds 0.26 at one station and at 3 stations for I. The 

influence of temporal persistence is thus relatively small. The effect of finite sample size 

is estimated explicitly in many of the analyses in sections 4 and 5. 

 

b. Estimation of the potential predictability and hindcast skill from GCM simulations 

Amospheric variability is linked to both local processes as well as interactions with other 

parts of the climate system. In tropics, it is well-known that a moderate to large part of 

the variability at seasonal and longer time scales is controled by slowly-evolving SST. A 

classical way to estimate the amount of SST-forced variance is to perform multiple GCM 

experiments forced by prescribed historical SST and differing only by their initial 

conditions (i.e. Gates, 1992). The EVR can then be used to separate SST-forced external 

variance, that is common to all ensemble members from the internal chaotic variance, 

defined as the difference between ensemble members. In the GCM context, the EVR is 

estimated at each grid-point using eq.4 and 5, with M being the number of ensemble 

members, instead of the number of stations.  

  

The external variance is potentially predictable from the SST and defines the highest skill 

attainable by the GCM in terms of the correlation between observed and simulated 

atmospheric time series (Rowell, 1998). However, 2

EXT
!  does not necessarily translated 

fully into skill; for example, the GCM may displace teleconnection patterns relative to 

observed climate. This spatial bias can be easily corrected by post-processing the GCM 
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outputs, using a “model output statistics” (MOS) correction, such as canonical correlation 

analysis (CCA) (Barnett and Preisendorfer, 1987). A CCA is computed here between the 

13 station time series and the GCM grid-point time series of precipitation within the 

region (30°W–0°W, 0°–30°N). A larger GCM window yields very similar results while a 

smaller window degrades it. The CCA is repeated 3 times, using S, O and I constructed 

from both station data and GCM simulations. Simulated O and I are computed using a 

GCM precipitation threshold of 1 mm / day.  

 

All 24 members of the ensemble were used without forming the ensemble mean, 

following the method of Ward and Navarra (1997) and Moron et al. (2001). The analysis 

proceeds by first expanding each field into principal components (PCs) and then 

performing the CCA in the reduced subspace of the two sets of PCs explaining 75% of 

the variance of each field. Cross-validation was employed, dividing the datasets into a 

33-year training and a 5-year validation part, and repeating the analysis 8 times. The 

number of the CCA modes retained was chosen so as to maximize the correlation 

between observed and simulated ensemble-mean SAI, under cross-validation. 

 

4. Analysis of station data 

a. Correlations between seasonal amount, occurrence, and intensity 

Cross-correlations between S on one hand and O and I on the other hand, are displayed in 

Fig. 2 for each station and the SAI. At the local scale, seasonal total correlates on average 

(Fig. 2, dashed line) rather equally with occurrence and mean intensity. However, we 

contend in this paper that occurrence is more strongly tied to the large-scale (and 
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potentially predictable) climate signals. This is the proposed reason why the SAI area-

average indices of S and O (Fig. 2a, last bar) correlate more strongly than those of S and I 

(Fig. 2b, last bar). When occurrence is averaged across stations, the noise at each station 

cancels, making the large-scale signal more visible in the area-average index (Fig. 2). 

 

For the wettest stations, the correlations between S and I (Fig. 2b) are usually larger than 

those between S and O (Fig. 2a). The correlation between I and O for the SAI is weakly 

positive ( 38.0=! ) while the individual correlations between I and O are weak and can 

be substantially negative (not shown). Such negative correlations could materialize if, for 

example, relatively dry years tend to consist of a small number of larger events, whereas 

relatively wet years contain a substantial number of small to moderate rainfall events. 

The quasi-independence between I and O is further confirmed by the variance of S, 

explained in a least-square sense, by using O and I as predictors (not shown). The 

proportion of variance of S explained by O and I is greater than 82% at all stations, and 

exceeds 97% at 12 of the 13 stations; it is always much larger than the individual squared 

correlations displayed on Fig. 2.  

 

b. Spatial coherence 

Figure 3 displays the standardized anomaly time series of S, O and I at each station, 

together with the SAI of each index (thick line). The level of inter-station “noise” given 

by the dispersion of the curves, is clearly much stronger for I than for S and O. In 

addition, the inter-annual variability of SAI is small for I, compared to S and O, 

suggesting that the external variance of I is small.  
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The spatial coherence of S, O and I, are compared in Table 1, in terms of the EVR, DOF 

and var[SAI] defined in section 3. All three measures yield results consistent with Fig. 2, 

giving similar values for amount and occurrence, and much smaller coherence for 

intensity. The EVR and var[SAI] are both about 45% for occurrence and amount, which 

suggests potential predictability with anomaly-correlation skills (i.e. square root of the 

EVR) exceeding 0.65. For intensity, on the other hand, an EVR of 15% would indicate a 

potential anomaly correlation skill of less than 0.4. Note that considering the optimal 

weighted average defined by the first EOF does not greatly exceed the fraction of 

variance given by the SAI. The DOF is between 3 and 4 for S and O, but exceeds 9 for I. 

Computing DOF values computed from seasonal quantities based on a rainfall threshold 

of 1 mm instead of 0 mm leads to very similar results (3.82, 3.09 and 9.86 for S, O and I 

respectively). In summary, the various measures of spatial coherence in Table 1 (and Fig. 

2) indicate that seasonal amount is only slightly less coherent than occurrence, while 

mean intensity is highly incoherent.  

 

[Table 1 near here, please] 

 

The number of spatial degrees of freedom is constrained by the rank of the correlation 

matrix, given here by the number of stations. The dependency on M can be estimated by 

computing DOF of all possible combinations of 2 – 12 stations drawn from the 13-station 

network. The mean, maximum and minimum DOF of these combinations are displayed 

in Fig. 4. It is striking that the mean DOF values for S (Fig. 4a) and O (Fig. 4b) increase 
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very slowly with the number of stations considered, while the estimated DOF increases 

almost linearly for I (Fig. 4c). To estimate statistical significance, an identical 

combinatorial analysis was carried out using purely random matrices, consisting of 13 

linearly independent time series of the same length; the one-sided 0.01, 0.05 and 0.10 

levels of significance are displayed in Fig. 4 as dotted lines. In the case of rainfall 

amount, the DOF values are significant at the 0.01 significance level (i.e., less than 1% of 

the random values fall below the worst possible observed DOF) when at least 4 stations 

are used (Fig. 3a). The number of stations required for statistically significant DOF 

estimates of occurrence frequency increases to 5 (Fig. 3b). In contrast, the mean value of 

DOF for observed mean rainfall intensity is never significant at the 0.05 level (Fig. 3c).  

 

The estimated mean DOF of the random series (dotted lines) is about 9.8 when the 13-

station network is used, rather than 13, due to finite length of the time series. We have 

repeated the calculation using longer time series of white and red noise, having the same 

first-order serial correlations as the 13-station network. The estimated DOF reaches about 

12.5 with 13 random time series of white noise length of 300, and slowly asymptotes. 

This is related to the fact that off-diagonal values of the correlation matrix of random 

series are not strictly equal to zero. The amplitude of these off-diagonal correlations, 

relative to the trace of the correlation matrix (equal to M), decreases – but does not cancel 

– when N increases, so that the estimated DOF tends toward M, but does not reach it. 

 

5. Spatial coherence versus skill 
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The DOF, EVR and var[SAI] in Table 1 all indicate substantial spatial coherence for 

seasonal-mean rainfall amount and daily rainfall occurrence but weak spatial coherence, 

if any, for the mean intensity of rainfall. This suggests that the “signal” in the former case 

may be due to a large-scale external forcing, which is weak or absent in the latter case. 

We can now reformulate our first hypothesis, i.e. that the S, O and I MN ! matrices X  

can be decomposed into a spatially-uniform “signal” matrix C  and a stochastic spatially-

independent “noise” matrix N  as 

(7)  NCX +=  

 by considering that C  is a function of some large-scale external forcing f as the SST.  

(8)  )(fIC g=  

where I  is the identity matrix. In this section, we consider theoretical examples, in which 

we construct random matrices X for 13 synthetic station time series, using eq. (8). Firstly, 

an ideal case is analyzed where the influence of f
r

 is perfectly and linearly transmitted to 

the network of stations (i.e. fIC
r

= ). We define f
r

to be a white noise random time series 

of 38 time units and N  to be an additional set of 13 independent white noise time series 

of 38 time units. The variances of C  and N  are scaled so that EVR of X  ≈ 1, 5, 10, 20, 

30, 40, 50, 60, 70, 80, 90, 95 and 99%. The level of skill, given by the correlation 

between f
r

and X , is plotted as a function of the square root of EVR inX in Fig. 5. In 

other words, the common variance between X and f
r

is the amount of signal. In Fig. 5a, 

we plot the “ensemble skill” in terms of the correlation between f
r

and the SAI of X , 

where each dot represents one of the 13,000 (i.e. 1000 simulations x 13 different values 

of EVR) simulations. This measure of skill increases very quickly as the EVR increases; 

the noise component cancels very rapidly between stations, even for such a small matrix, 
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and even at low EVRs. With an EVR of 10%, the SAI correlation averaged over the 1000 

simulations is 0.76, with a minimum of 0.57 and maximum of 0.90. This does not imply, 

however, that the skill at the individual stations is high; with an EVR of 10%, the 

individual skill varies between –0.33 and 0.77 (the 25th and 75th percentiles are 0.21 and 

0.41). This range underscores the challenge in interpreting differences in correlation skill 

across stations in downscaling predictability studies. The ranges here are achieved with 

the same background level of skill, and are attributable purely to sampling error, so that 

with longer series, skill in all individual series would be the same, tending to the square 

root of EVR. Fig. 5b shows the “mean skill” in terms of the 13-station average of each 

station’s correlation. The mean skill must converge toward the square root of EVR and is 

seen to do so very rapidly as EVR increases (Fig. 5b). 

 

This above example is clearly ideal, since we assume that the signal is equal to f
r

, which 

is assumed to be known. The same theoretical example is now repeated by adding a 

certain amount of random white noise !r  to f
r

 (i.e. )( !
rr

+= fIC , representing 20, 40, 60 

and 80% of the total variance of f
r

. Adding a large amount of noise would be analogous 

to recognizing that the large-scale climate forcing field actually contained little potential 

predictability from SST-forcing, such as for the NAO. The percentiles of the individual 

correlations between each column of X  and f
r

 for an EVR of ~8% (typical of I), ~44% 

(typical of S and O) are displayed on Fig. 6. Adding noise to f
r

 logically decreases the 

correlations between f
r

 and each station. It also increases the sampling variability for 

high EVRs, given by the range of values. This increase is clearly stronger for an EVR of 

~44% (Fig.6b) than for an EVR ~8% (Fig.6a).  If we define a skill of 0.4 as “useful”, 
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respectively 99.9%, 97.7%, 85.3%, 55.4% and 10.8% of the individual correlations are 

above such a skill with a proportion of 0%, 20%, 40%, 60% and 80% of noise added in f
r

 

in case of an EVR of ~44%  (fig. 6b). 

 

6. Potential predictability and skill provided by SST 

In this section, we compare the potential predictability inferred from the spatial 

coherence of station rainfall with the potential predictability and skill computed from a 

24-member ensemble of GCM simulations forced by prescribed SST.  

 

Table 2 shows the external variance ratio estimated at each GCM grid-point 

corresponding approximately to Senegal (i.e. the 4 easternmost grid-points of the box 

indicated on Fig. 1e; the 2 westernmost grid-points of this box are located over ocean and 

not included here). The GCM’s raw EVR estimates of potential predictability are 

qualitatively consistent with those inferred from spatial coherence, with the occurrence-

predictability 2.5–9 times larger than that of mean intensity. This estimate does not take 

into account any spatial bias in the GCM’s rainfall anomalies over Senegal, and excludes 

sources of potential predictability other than SST. 

 

[Table 2 near here, please] 

 

The skill of the GCM simulation is firstly computed using the ensemble mean at the 4 

continental points corresponding to Senegal (defined in Table 1 and Fig. 1e). The 

correlations between observed and simulated SAI are 0.24, 0.36 and –0.18 for S, O and I 
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respectively. These values are lower than the potential predictability estimates in Table 2 

would suggest, since an external variance of 22.4% given by the SAI of O would 

correspond to a potential anomaly correlation of 0.47. Several factors could lower the 

skill. A well-known issue is that GCMs tend to displace the teleconnection patterns in 

space. Figure 7 shows the correlation between observed SAI of seasonal rainfall, 

occurrence of rainfall and mean intensity of rain and their simulated counterparts in the 

24-member ensemble of ECHAM 4.5 simulations. The ensemble mean is used here. The 

correlations are weak to moderate for S (Fig. 7a) and O (Fig. 7b) and weak for I (Fig. 7c). 

Moreover, the highest values of each map are systematically shifted from the observed 

network, mainly along the Mauritanian coast for S (Fig. 7a) and O (Fig. 7b), and along 

the Sudanian belt near 12°N for S (Fig. 7a) and I (Fig. 7c). In other words, the best 

estimate of the observed rainfall variability of the 13-stations of Senegal is clearly shifted 

in the ECHAM 4.5 simulation. We remove this bias using a MOS correction, as 

described in section 2b.  

 

The cross-validated MOS-corrected GCM skill values are displayed in Fig. 8, and are 

indeed much higher than without the MOS correction, and of the order of the potential 

predictability in Table 2.  Skills are highest for O (Fig. 8b) slightly exceeding S (Fig. 8a). 

The geographical variation of skill is also coherent for S (more skill over the central and 

northern part of the country and less skill for the southern forested area) and O (more 

skill over the north and western part of the country). Recalling the sampling ranges of 

skill variations that are possible with this length of historical record (Fig. 5 – 6), such 
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spatial variations in skill would need to be justified in physical term for them to be used 

with any confidence for forecasting.  

 

The fact that 3 stations show significant skill for I (Fig. 8c) is intriguing but may be due 

to sampling. We have applied the same hindcast scheme to the median rainfall amount on 

wet days, instead of the mean intensity; the median is less subject to sampling, compared 

to the mean, especially for dry stations where the number of wet days is small.  Using the 

median yielded a severe decrease of skill; for example, using 4 CCA modes, the 

correlation between observed and MOS-corrected simulated median rainfall amount 

lowers every correlation below 0.31. In addition, simulated I is almost always strongly 

positively correlated with simulated O over Sahelian belt (correlation > 0.7). It is thus 

possible that some skill is artificially transmitted to observed I.   

 

7. Conclusion 

The primary motivation of this study was to explore the potential predictability of rainfall 

characteristics at regional and local scales. The method used here considers that, at the 

regional scale, the stations of a network can be treated as different members of an 

ensemble forced by the same large-scale forcing (such as global SST fields). In this 

context, each station shares a common variability —given by the area station-average 

anomaly— referred to as signal, together with an independent component, referred to as 

noise. This simple hypothesis assumes that the regional impact of large-scale climate 

anomalies is uniform in space, which appears reasonable for a relatively small and flat 

country like Senegal. This assumption can be relaxed by considering a weighted mean 
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(such as an EOF pattern), provided the weights remain constant in time. For the case of 

Senegal, the variance explained by the first EOF is only slightly greater than that of the 

average of standardized anomalies, i.e. the SAI (Table 1). 

 

The seasonal rainfall amount, daily frequency of occurrence, and daily mean intensity of 

rainfall are, by definition, statistically related (Fig. 2). At the station scale, interannual 

anomalies of seasonal rainfall total are, on average, rather equally correlated with both 

occurrence and mean intensity. For area-average indices, the correlation of seasonal total 

with occurrence is high, whereas this is not the case for seasonal total with mean 

intensity. All the measures of spatial coherence examined (Table 1, Fig. 3 – 4) indicate 

that the amount of noise is larger for mean intensity, than for occurrence and seasonal 

amount. Thus, the contribution of mean intensity to interannual anomalies in amount is 

likely to be unpredictable. This is consistent with occurrence being more spatially 

coherent than amount.  

 

The combinatorial analysis (Fig. 4) gives a measure of the unknown “true” number of 

spatial degrees of freedom (DOF) of interannual variability, which can be interpreted as 

the dimensionality of the underlying attractor. The DOF of occurrence and seasonal 

amount is estimated to be between 3 and 4, and almost invariant on the number of 

stations considered (Fig. 4a,b). This is an important result: it translates into the number of 

stations that are necessary to describe accurately the spatio-temporal interannual 

variability of these quantities in Senegal. The estimated DOF of daily mean rainfall 

intensity of rainfall, on the other hand, is found to increases almost linearly with the 
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number of stations considered. The empirical DOF of daily mean intensity should be 

viewed as a lower limit, and would be expected to increase for a denser network. It also 

implies that the network is too sparse to accurately sample interannual variability of daily 

mean intensity; potential predictability of daily mean intensity at smaller spatial scales 

than those analyzed here cannot be ruled out. Our results have important implications for 

downscaling of GCM simulations to station scales; for example, where this distinction 

between occurrence and mean intensity predictability applies, it may prove useful to 

concentrate particularly on achieving a good estimate of occurrence, and to partly treat 

mean intensity as a stochastic process. 

 

The difference in potential predictability between the three variables makes sense from 

both statistical and physical points of view. In dry climates, the daily mean intensity of 

rainfall is heavily influenced by a few large events, whose details are controlled by small-

scale features of cumulus convection. Very strong variability was observed at daily or 

sub-daily time scales during the HAPEX-Sahel experiment (D’Amato and Lebel, 1998; 

Lebel et al., 2003). These events can influence the seasonal totals (cf. Fig 2b), but they 

are spatially incoherent, even statistically, and are thus not likely to be predictable. 

Occurrence frequency, on the other hand, is less prone to sampling (Snijders, 1986).  

 

The second goal of the paper was to investigate if a set of GCM simulations were 

consistent with the inferences about potential predictability and skill drawn from the 

spatial coherence analyses of the observations. The results are overall remarkably 

consistent with those inferred from the observed analysis of spatial coherence. The 24-



 25 

member ECHAM4.5 GCM (after MOS correction) is found to have a moderate-to-strong 

cross-validated skill at reproducing the interannual variations in the 13-station average 

rainfall occurrence (correlation = 0.60) and seasonal amounts (correlation = 0.54) (Fig. 

8). At the individual station level, the maximum interannual correlation found between 

simulation and observation is 0.75 for the occurrence and 0.63 for the seasonal amount. 

The skill is highest in the central and northern part of the country and drops to 

insignificant values in the southern part of the country. Further study is needed to 

determine whether the source of this decrease is related to, for example, details of the 

local vegetation types, spatial changes in the expression of the large-scale dynamics of 

the teleconnection processes, or simply statistical sampling error such that for longer time 

series, the skill level would, in fact, be uniform over the domain of study.   

 

For the daily mean intensity, the skill is close to zero, except at three stations. Our results 

indicate that the apparent skill at these stations is likely an artifact of sampling variability 

(Fig. 5 – 6). Considering the median rainfall amount on wet days, instead of the mean, 

reduces the skill to near zero at all stations. Despite the above finding that daily mean 

intensity is largely unpredictable, the observed interannual changes in daily mean 

intensity at the station-scale can be strongly correlated with seasonal amount at the 

station-scale (Fig. 2b). The inference is that the variance of the seasonal rainfall total that 

is related to daily mean intensity, will belong mostly to the unpredictable component of 

the variance in the seasonal total. Or put the other way around, daily mean intensity is 

substantially correlated with the unpredictable component of the seasonal rainfall total. 
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This paper has developed some methodological approaches for exploring predictability of 

rainfall characteristics, and applied them in one particular setting. Clearly, it will be 

interesting to apply such analyses in different meteorological and topographic settings to 

establish the generalizability of results, and explore issues across zones that are more 

heterogeneous in topography than the one studied here. It would also be interesting to 

analyze longer data records The current network contains only few years in the pre-1968 

wet period, preventing the investigation of possible decadal modulation of the spatial 

coherence. Further insight can be expected from studies in particularly data rich 

situations where issues of spatial scale can be more closely addressed, compared to the 

approach here, that has been confined to contrasting the point scale, with the regional 

average.  
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Figure captions 

 

Figure 1 : (a) Location of the 13 stations used in this study; (b) Seasonal amount (in mm 

in July-September); (c) Occurrence of rainfall (in number of rainy days receiving > 0 

mm); (d) Daily mean intensity of rain (in mm/day) during wet day; (e) Seasonal amount 

(in mm in July-September) for the 24-member ensemble of ECHAM 4.5. Contours are 

indicated at 100, 250, 500, 750 and 1000 mm and the black box represents the window 

used in other panels. The grid-points of the GCM are indicated by small crosses.  

 

Figure 2: Temporal correlation (x 100) between S and O (a) and between S and I (b) for 

each station. The 13 stations are ranked from the driest to the wettest one (the numbers 

refers to Fig. 1a) and the last column gives the correlation between the SAI of S and O (a) 

and of S and I (b). The horizontal dashed line indicates the country average of the 

correlations between S and O (a) and between S and I (b).  

 

Figure 3: Normalized anomalies of (a) seasonal amount (b) occurrence of rainfall and (c)  

mean intensity of rainfall for the 13 stations of Senegal. The grey lines indicate each 

stations and the bold line with circle is the SAI (= mean of the 13 stations). 

 

Figure 4: Mean (full line with circle), minimum and maximum (dashed line) of DOF of 

all the combinations (from 2 to 13 stations) of (a) the seasonal amount, (b) occurrence of 

rainfall and (c) mean intensity of the 13 stations of the Senegal’s network. There are 

respectively 78, 286, 715, 1287, 1716, 1716, 1287, 715, 286, 78, and 13 possible 
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combinations of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 stations respectively.  The dotted lines 

give the 0.1, 0.05 and 0.01 levels of significance estimated from 100 random matrices of 

the same size as Senegal network (38 observations by 13 variables which are independent 

from each others). 

   

Figure 5: Skill (estimated by temporal correlation) vs the square root of EVR  for the 

13000 simulations of the random matrices of the same size as Senegal in case where 

fIC
r

= ; (a) Ensemble skill (i.e. correlation between SAI ofX and f
r

) and (b) mean skill 

(i.e. mean of the correlation between each column ofX and f
r

). The values are computed 

for an EVR of 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% and 

99%. The vertical lines indicate the empirical square root of EVR of S, O and I (Table 1). 

 

Figure 6: Median (line + circle) and 1%, 5%, 25%, 75%, 95% and 99% percentiles of the 

individual skill (i.e. temporal correlations between each column of X  and f
r

 time series) 

for an EVR between 7.5 and 8.5% (typical of I) (a) and for an EVR between 43 and 45.5% 

(typical of S and O). 

 

Figure 7: Correlation (x 100) between SAI (= country average of standardized anomalies) 

of (a) seasonal amount, (b) occurrence of rainfall, (c) daily mean intensity of rain and the 

same quantities in the ensemble mean of ECHAM 4.5. In panel (b) and (c), the simulated 

occurrence and daily mean intensity of rain are computed only from simulated daily 

amounts > 1 mm. The contours are displayed at 0, 15, 30, 45 and 60 and the black box 

indicates the location of Senegal.  
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Figure 8: Skill (= correlation x 100 between observed and MOS corrected GCM time 

series) of (a) seasonal amount, (b) occurrence of rainfall and (c) daily mean intensity of 

rain. The MOS uses a cross-validated (5 years are withheld at each turn) CCA between 

observed variables on the 13-station network and simulated variables from the 24-

member within the region (30°W-0°; 0°-30°N). The number of CCA modes included in 

the MOS correction is indicated in the title of each panel. Upper triangle indicates 

positive correlations and lower triangle indicates negative correlations. The filled 

triangles are significant at the two-sided 0.1 level according to a random-phase test 

(Janicot et al. 1996 ; Ebisuzaki, 1997).  
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Table captions 

 

Table 1 : External variance ratio (in %), number of degree of freedom, interannual 

variability of the SAI, and variance explained by the first EOF of the 13-station network.  

 

Table 2 : External variance ratio (in %) at 4 continental grid points corresponding 

approximately to Senegal (i.e. the easternmost grid-points in the box underlined in Fig. 

1e). Daily mean intensity and occurrence are computed with days receiving more than 1 

mm. The SAI is computed as the mean of standardized anomalies of the 4 grid-points of 

each run.   
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Figure 1 : (a) Location of the 13 stations used in this study; (b) Seasonal amount (in mm 
in July-September); (c) Occurrence of rainfall (in number of rainy days receiving > 0 
mm); (d) Daily mean intensity of rain (in mm/day) during wet day; (e) Seasonal amount 
(in mm in July-September) for the 24-member ensemble of ECHAM 4.5. Contours are 
indicated at 100, 250, 500, 750 and 1000 mm and the black box represents the window 
used in other panels. The grid-points of the GCM are indicated by small crosses.  
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Figure 2: Temporal correlation (x 100) between S and O (a) and between S and I (b) for 
each station. The 13 stations are ranked from the driest to the wettest one (the numbers 
refers to Fig. 1a) and the last column gives the correlation between the SAI of S and O (a) 
and of S and I (b). The horizontal dashed line indicates the country average of the 
correlations between S and O (a) and between S and I (b).  
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Figure 3: Normalized anomalies of (a) seasonal amount (b) occurrence of rainfall and (c)  
mean intensity of rainfall for the 13 stations of Senegal. The grey lines indicate each 
stations and the bold line with circle is the SAI (= mean of the 13 stations). 
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Figure 4: Mean (full line with circle), minimum and maximum (dashed line) of DOF of 
all the combinations (from 2 to 13 stations) of (a) the seasonal amount, (b) occurrence of 
rainfall and (c) mean intensity of the 13 stations of the Senegal’s network. There are 
respectively 78, 286, 715, 1287, 1716, 1716, 1287, 715, 286, 78, and 13 possible 
combinations of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 stations respectively.  The dotted lines 
give the 0.1, 0.05 and 0.01 levels of significance estimated from 100 random matrices of 
the same size as Senegal network (38 observations by 13 variables which are independent 
from each others). 
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 Figure 5: Skill (estimated by temporal correlation) vs the square root of EVR  for the 
13000 simulations of the random matrices of the same size as Senegal in case where 

fIC
r

= ; (a) Ensemble skill (i.e. correlation between SAI ofX and f
r

) and (b) mean skill 
(i.e. mean of the correlation between each column ofX and f

r

). The values are computed 
for an EVR of 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% and 
99%. The vertical lines indicate the empirical square root of EVR of S, O and I (Table 1). 
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Figure 6: Median (line + circle) and 1%, 5%, 25%, 75%, 95% and 99% percentiles of the 
individual skill (i.e. temporal correlations between each column of X  and f

r

 time series) 
for an EVR between 7.5 and 8.5% (typical of I) (a) and for an EVR between 43 and 45.5% 
(typical of S and O). 
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Figure 7: Correlation (x 100) between SAI (= country average of standardized anomalies) 
of (a) seasonal amount, (b) occurrence of rainfall, (c) daily mean intensity of rain and the 
same quantities in the ensemble mean of ECHAM 4.5. In panel (b) and (c), the simulated 
occurrence and daily mean intensity of rain are computed only from simulated daily 
amounts > 1 mm. The contours are displayed at 0, 15, 30, 45 and 60 and the black box 
indicates the location of Senegal. 
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Figure 8: Skill (= correlation x 100 between observed and MOS corrected GCM time 
series) of (a) seasonal amount, (b) occurrence of rainfall and (c) daily mean intensity of 
rain. The MOS uses a cross-validated (5 years are withheld at each turn) CCA between 
observed variables on the 13-station network and simulated variables from the 24-
member within the region (30°W-0°; 0°-30°N). The number of CCA modes included in 
the MOS correction is indicated in the title of each panel. Upper triangle indicates 
positive correlations and lower triangle indicates negative correlations. The filled 
triangles are significant at the two-sided 0.1 level according to a random-phase test 
(Janicot et al. 1996 ; Ebisuzaki, 1997).  
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 S O I 

EVR (%) 43.6 45.1 8.0 

DOF 3.81 3.26 9.33 

Var[SAI] (%) 47.3 48.7 14.8 

Variance explained by the 

first EOF (%) 

47.9 52.8 19.3 

Table 1 : External variance ratio (in %), number of degree of freedom, interannual 

variability of the SAI, and variance explained by the first EOF of the 13-station network.  
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Longitude Latitude S O I 

14.0625°W 12.5578°N 27.7 33.9 13.3% 

11.25°W 12.5578°N 20.4 26.5 10.0 

14.0625°W 15.3484°N 16.5 18.3 6.3 

11.25°W 15.3484°N 13.5 15.3 6.0 

EVR of the SAI 22.4 28.4 11.4 

Table 2 : : External variance ratio (in %) at 4 continental grid points corresponding 

approximately to Senegal (i.e. the easternmost grid-points in the box underlined in Fig. 

1e). Mean intensity and occurrence are computed with days receiving more than 1 mm. 

The SAI is computed as the mean of standardized anomalies of the 4 grid-points of each 

run.   


