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Abstract 18 

The seasonal potential predictability of monsoon onset during the August–December season over Indonesia is 19 

studied through analysis of the spatial coherence of daily station rainfall and gridded pentad precipitation data from 20 

1979 to 2005. Onset date, defined using a local agronomic definition, exhibits a seasonal northwest-to-southeast 21 

progression from northern and central Sumatera (late August) to Timor (mid December). South of the equator, 22 

interannual variability of the onset date is shown to consist of a spatially-coherent large-scale component, together 23 

with local-scale noise. The high spatial coherence of onset is similar to that of the September–December seasonal 24 

total, while post-onset amounts averaged over 15–90 days and September–December amount residuals from large-25 

scale onset show much less spatial coherence, especially across the main islands of monsoonal Indonesia. The 26 

cumulative rainfall anomalies exhibit also their largest amplitudes before or near the onset date. This implies that 27 

seasonal potential predictability over monsoonal Indonesia during the first part of the austral summer monsoon 28 

season is largely associated with monsoon onset, and that there is much less predictability within the rainy season 29 

itself. A cross-validated canonical correlation analysis using July sea surface temperatures over Tropical Pacific and 30 

Indian Oceans (80°–280°E, 20°S–20°N) as predictors of local-scale onset dates exhibits promising hindcast skill 31 

(anomaly correlation of ~0.80 for the spatial average of standardized rain gauges and ~0.70 for standardized gridded 32 

pentad precipitation data). 33 

34 
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1. Introduction 35 

Rainfall over Indonesia is governed by the austral-Asian monsoon, whose onset progresses from northwest-to-36 

southeast during the austral spring (Aldrian and Susanto, 2003; Naylor et al., 2007). This is also the season when the 37 

El Niño - Southern Oscillation (ENSO) exerts its strongest influence on Indonesian rainfall, particularly during the 38 

September–December monsoon onset season (Hamada et al., 2002). The impact of ENSO then diminishes during the 39 

core of the rainy season in December–February (Haylock and McBride, 2001; Hendon, 2003; Aldrian et al., 2005, 40 

2007; Giannini et al., 2007), suggesting that the timing of monsoon onset may be potentially predictable.   41 

 42 

The date of onset of the rainy season is of particular importance for the agriculture sector over Indonesia (Naylor et 43 

al., 2002, 2007). It determines the suitable time for planting crops, while delayed onset during El Niño years 44 

(Hamada et al., 2002; Boer and Wahab, 2007) can lead to crop failure. For irrigated rice farmers in Java, information 45 

on onset timing is also important for developing strategies (Boer and Subbiah, 2005; Naylor et al., 2007) to avoid 46 

exposure of the second rice crop to higher drought risk at dry season planting (April–July), particularly for farmers 47 

located at the tail-end of the irrigation system. Farmers in Indonesia often suffer from “false rains” in which isolated 48 

rainfall events around the expected onset date do not signal the sustained onset of the monsoon. Such false starts 49 

occurring in September prompt potato farmers in Pengalengan in West Java to start planting. In the eastern part of 50 

Indonesia, such as East Nuna Tenggara, multiple false starts can cause multiple failures, with farmers sometimes 51 

planting up to four times in a season. 52 

 53 

This paper discusses the seasonal potential predictability of monsoon onset during the August–December season 54 

over Indonesia. The approach taken is based on quantifying the spatial coherence of specific rainfall properties: the 55 

September–December (SOND hereafter) rainfall total, rainfall onset date, and post-onset rainfall totals following 56 

Haylock and McBride (2001) and Moron et al. (2006, 2007).  The seasonal predictability of large-scale monsoon 57 

onset is then estimated based on sea surface temperatures (SST) in July using a cross-validated canonical correlation 58 

analysis (CCA). The two precipitation datasets (rain-gauge and CPC merged analysis of precipitation, CMAP) are 59 

described in section 2, together with the definition of onset. Results are presented in section 3, with conclusions 60 

drawn in section 4. 61 

 62 
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2. Data and method 63 

a. Global Summary Of the Day (GSOD) station data 64 

Daily rainfall at rain-gauges for the period 1979–2004 was extracted from NOAA Climate Prediction Center (CPC) 65 

Global Summary of the Day (GSOD) dataset, archived at the National Center for Atmospheric Research (NCAR), 66 

and originating through the WMO Global Telecommunication System (GTS). There are 91 available stations for 67 

Indonesia. The station-years having at least 50% of daily data are extracted and the 57 stations having at least 10 68 

available years are selected. Missing entries (< 13%) were filled using a simple stochastic weather generator (Wilks, 69 

1999), considering the wet-to-wet and dry-to-wet persistence and a gamma distribution for wet days, computed on a 70 

monthly basis at each station. If a month is completely missing (< 3% of station-months for SOND), this method 71 

simulates a climatological daily sequence for that month.  72 

 73 

b. CPC Merged Analysis of Precipitation (CMAP) 74 

Gridded pentad CMAP on a 2.5-degree latitude-longitude grid was selected within a window (12°S–6°N, 90–130°E) 75 

over the 1979–2005 period, based only on rain gauges and satellite estimates (Xie and Arkin, 1996). Over this 76 

window, there are typically 1–2 rain gauges per grid-box including land (P. Xie, personal communication).  77 

 78 

c. Definition of onset 79 

Monsoon onset date can be defined in various ways. We used an agronomical definition (e.g. Sivakumar, 1988) 80 

based on local rainfall amounts using thresholds to define the onset, requiring a certain amount of rainfall within a 81 

specified period of time, with no extended dry spell occurring afterward. This local definition is sensitive to small-82 

scale processes but is used here in order to be relevant to agricultural management, and to prevent any a priori 83 

inflation of spatial coherence.    84 

 85 

Onset date is defined to be the first wet day of the first 5-day sequence receiving at least 40 mm that is not followed 86 

by a dry 10-day sequence receiving less than 5 mm within the following 30 days from the onset date. Onset is 87 

computed from August 1st because August-September are the driest months over Indonesia (Aldrian and Susanto, 88 

2003; Aldrian et al., 2007). The latter criterion helps to avoid “false starts,” which could be defined, for example, as 89 

the difference between the first 5-day wet sequence receiving at least 40 mm and the onset as defined above. The 90 
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identification of false starts is sensitive to the choice of the post-onset dry-spell length. In fact, the sensitivity of 91 

crops to post-onset dry spell varies. In tropical countries, dry spell with length of more than 7 days would have 92 

serious impact on crop yields (Niewolt, 1989). Other study found that 21 rice varieties being exposed to dry spell 93 

with length of 16 days during vegetative stage will have delayed harvesting time between 2 and 27 days and reduced 94 

yield between 10 and 91% (Dikshit et al,. 1987). Indeed, false starts defined with a 10-day dry spell in the following 95 

30 days occur in 46% of station-years, ranging from less than 40% in northern and central Sumatera and Kalimantan 96 

to a maximum > 50% in western and central Java. These percentages decrease by a factor of 2–3 when the length of 97 

the post-onset dry spell is chosen to be 15 days. The mean onset date is also earlier (by one or two weeks in mean) 98 

with a post-onset dry spell lasting 15 days rather than 10 days. Nevertheless, this parameter (and the others entering 99 

the onset definition) has only a very weak impact on the large-scale and regional-scale interannual variability of 100 

onset dates (for example, the spatial averages of CMAP and GSOD onset-date anomalies computed with both 101 

parameters are correlated at 0.99 and 0.97 respectively). Increasing the length of the initial wet spell reduces the 102 

noise introduced by weather variability, but the threshold of 5 days is used to facilitate comparison between CMAP 103 

and GSOD datasets. The National Agency for Meteorology and Geophysics of Indonesia (BMG) defines the 104 

monsoon to start when, after September 1, two consecutive 10-day sequences each receive at least 50 mm of rain. 105 

While changing the length and/or the amount of rainfall of the initial wet spell modifies the climatological mean 106 

onset date, its impact on interannual variability is again found to be much smaller. The onset date is undefined for 2 107 

cases in CMAP and the missing entries are filled with the latest available onset dates for the corresponding grid-108 

points. 109 

 110 

d. Spatial coherence estimates 111 

The spatial coherence of interannual precipitation anomalies is estimated empirically in terms of the interannual 112 

variance of spatially-averaged standardized anomalies given by the Standardized Anomaly Index (SAI, Katz and 113 

Glantz, 1986). Use of the SAI in the context of tropical rainfall is discussed extensively in Moron et al. (2006, 2007). 114 

The interannual variance of the SAI (var[SAI]) measures the spatial coherence between M stations (or gridpoints) 115 

because it depends on the inter-station correlations; it ranges from var[SAI] = 0 when two samples of equal-size, 116 

perfectly covariant, are perfectly out-of-phase, var[SAI]=1/M when all the correlations are zero and var[SAI] = 1 117 

when all stations are perfectly correlated.  118 
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 119 

The SAI is an empirical estimate of the shared in-phase “signal” across the network. The “noise” component can be 120 

defined in terms of the (square-rooted spatial average) squared deviations relative to the SAI. This definition of 121 

signal and noise is analogous to the distinction between externally-forced and internally-generated variance in 122 

ensembles of General Circulation Model (GCM) simulations (i.e. Rowell, 1998), with stations or grid-points playing 123 

the role of GCM ensemble members. A signal-to-noise ratio (SNR) can be formed by dividing the SAI by the noise, 124 

but this second-order statistic is more sensitive to sampling issues than the SAI used here. 125 

 126 

Statistical significance of interannual correlations is assessed against 1000 synthetic timeseries of the same length 127 

and spectral density as the observed pair, but random phase (Janicot et al., 1996), with the two-sided 90%, 95% and 128 

99% significance levels indicated in the following by one (*), two (**) and three (***) asterisks respectively. 129 

 130 

3. Results 131 

a. Onset date 132 

The mean onset dates determined from CMAP and GSOD, plotted in Fig. 1a, exhibit a NW-SE progression from late 133 

August in northern-central Sumatera and Kalimantan to mid December in Timor. The dates agree well between the 134 

two datasets, while there is a large inter-station variability over Java (Fig. 1a) that could be related to small-scale 135 

topographic features. Onset occurred before November 1, December 1 and January 1 in 67% (65%), 79% (86%), and 136 

94% (95%) of cases respectively in CMAP (GSOD). Mean onset dates computed for subsets of GSOD stations 137 

averaged by sub-region (Table 1 and Fig. 1a) are in good agreement with Naylor et al. (2007; their Fig. 1). Using 138 

their definition (i.e. the first day when accumulated rainfall from August 1st reaches 200 mm) leads to similar median 139 

dates to those shown in Table 1, except in northern areas (not shown). Moreover, the interannual variability is highly 140 

consistent between both definition with cross-correlations > 0.85*** for all regions displayed in Table 1 except for 141 

northern Sumatera (r = 0.52***). Onset date is less relevant in the northern regions because of the differing 142 

seasonality of rainfall north of the equator (Aldrian and Susanto, 2003).  143 

 144 

The interannual variability of onset date for the 14 stations over western and central Java is shown in Fig. 1b in terms 145 

of the individual standardized anomaly timeseries (dotted). The signal that is common to the 14 stations, defined by 146 
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the SAI (heavy solid), accounts for a moderate fraction (var[SAI]=0.41) of the total variance at the individual 147 

stations, indicating substantial inter-station noise. However, the SAI is correlated at 0.80*** (0.83***) with the 148 

large-scale SAI (leading PC timeseries) computed from CMAP onset dates over all 128 gridpoints (heavy dashed 149 

blue and red curves respectively), suggesting that the signal in onset over western and central Java is related to the 150 

large scale despite considerable small-scale noise. This is also seen in the other sub-regions (Table 1). The influence 151 

of ENSO is clearly visible in Fig. 1b, with big delays in large-scale onset during the 1982 and 1997 El Niño events. 152 

In fact, the correlation between large-scale SAI (leading PC time series) of CMAP is correlated at 0.84*** (0.84***) 153 

with the Niño 3.4 SST anomalies in October, corresponding to the mean onset date across the domain. Some 154 

skewness is also visible with delayed onsets exhibiting larger amplitudes than early onsets.  155 

 156 

The leading EOFs of CMAP and GSOD onset dates are plotted in Fig. 2. The leading CMAP EOF accounts for 36% 157 

of total variance (EOF#2 accounts for 9% of total variance), and consists of a large-scale monopolar pattern with 158 

highest loadings over “monsoonal” Indonesia, (i.e. from southern Sumatera to the Timor Sea (Aldrian and Susanto, 159 

2003, their Fig. 2). Loadings remain substantial toward the southeast, but fall off rapidly over northern Sumatera, the 160 

Malay Peninsula and northern Kalimantan where they are generally close to zero. The loadings of the leading EOF of 161 

GSOD onset dates (31% of the variance) are generally similar to those of CMAP, while their PC timeseries are 162 

correlated  >  0.90***; there is thus a high level of consistency at large scale between these two contrasting datasets. 163 

Similarly, the cross-correlations between the SAIs of each region defined in Fig. 1a are always positive and 164 

significant at the one-sided 95% level or greater.  165 

 166 

As discussed in Sect. 2d, the station-scale noise can be defined in terms of the (square-rooted spatial average) 167 

squared deviations of the stations’ rainfall relative to the SAI. The noise variance computed in this fashion for each 168 

of the sub-regions (not shown) is fairly uniform in space, though somewhat smaller in southern Kalimantan, southern 169 

Sumatra and western and central Java. However, differences in the spatial sampling between sub-regions do not 170 

allow for confidence in this second-order statistic. 171 

 172 

b. Seasonal rainfall total and post-onset amounts 173 
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The temporal correlations between the leading PC of onset (Fig. 1b) and the leading PC of SOND seasonal total 174 

exceed -0.90*** for both datasets. The variance explained by the leading EOF of SOND total (51% in CMAP and 175 

32% in GSOD) is even larger than that of onset, presumably due to the seasonal integration of rainfall that filters out 176 

some of the local-scale noise inherent in the definition of onset date. In fact, 46% (CMAP) and 67% (GSOD) of 177 

onsets occurred between September 1st and December 31st. This suggests that at least some of the spatially-consistent 178 

interannual variability of SOND amount is actually conveyed by the anomalous timing of the monsoon onset. 179 

 180 

Three approaches are used to test this hypothesis, by estimating the spatial coherence of rainfall amount beyond the 181 

onset date. (i) Firstly, the spatial coherence of the rainfall summed over the 15, 30, 60 and 90 days following the local 182 

onset date is computed. Post-onset rainfall is a priori independent of the timing of the onset of the monsoon, 183 

although both may be influenced by ENSO and local-scale SST. The disadvantage of this approach is that post-onset 184 

amounts refer to different temporal windows depending on the particular year and station location. Nonetheless, 30-185 

day amounts, for example, refer to periods before January 1st in 69% (CMAP) and 88% (GSOD) of cases. (ii) In the 186 

second approach, the component of the SOND total accounted for by the large-scale onset, defined as the leading PC 187 

of each dataset (Fig. 2), is removed using a least-squares linear regression. The remaining residual is thus associated 188 

only with post-onset amounts, and all information linearly related to large-scale onset is removed a priori. (iii) The 189 

last method is to compare cumulative spatial-average rainfall anomalies computed from August 1st as expressed as 190 

percentage of the long-term mean for early and late onset years.  191 

 192 

Estimates of var[SAI] for each quantity are given in Table 2. The spatial coherence is high (i.e. large var[SAI]) for 193 

both onset date and seasonal total, but falls to near-zero for post-onset rainfall and SOND residuals. There is 194 

nonetheless a weak increase of spatial coherence as the length of the post-onset averaging period increases from 15 195 

to 90 days, expected due to the progressive cancellation of meteorological events as the length of considered period 196 

grows. The difference between CMAP and GSOD results could come from the area, mainly oceanic, that is not 197 

sampled in GSOD and/or smoothing provided by gridbox-pentad averages in CMAP.  198 

 199 

Standardized anomaly timeseries of post-onset 90-day amount for each CMAP gridbox are shown in Fig. 3a, 200 

together with the SAI. Spatial coherence is generally low in most years, with the exceptions of the 1982 and 1997 201 
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large El Niño events. The loadings of the leading EOF of the post-onset 90-day amount are displayed in Fig. 3b. 202 

These are weak over monsoonal Indonesia, especially between southern Sumatera to Sulawesi, where those of the 203 

leading EOF of onset peak (Fig. 2), and this mode explains less variance (22% in CMAP and 11% in GSOD) than 204 

does the leading EOF of CMAP onset date (36% in CMAP and 32% in GSOD). The temporal behavior of the 205 

leading PC is nevertheless consistent with that of onset date, i.e. the post-onset season tends to be anomalously dry 206 

when onset is anomalously late, and vice versa, at least for CMAP (r between leading PC of onset and of post-onset 207 

90-day amount is -0.87*** in CMAP and -0.19 in GSOD, the post-onset PCs being correlated at 0.37* between the 208 

two datasets). Note that the second EOF of post-onset 90-day amount in GSOD (not shown) explains 10% of total 209 

variance and is correlated at -0.60*** (respectively 0.51**) with the leading PC of onset date in GSOD (respectively 210 

the leading PC of post-onset 90-day in CMAP). The fact that the loadings are rather large over the eastern Indian 211 

Ocean and scattered patches of the northern and eastern oceanic margins of the domain (Fig. 3b) could be evidence 212 

of a deterministic signal and warrants further study.  213 

 214 

The leading EOF of SOND residuals (Fig. 3c) shares some similarities with that of post-onset 90-day rainfall 215 

amounts (Fig. 3b), at least for CMAP (25% explained variance); both have relatively high homogeneous loadings 216 

over eastern Indonesia, and weak loadings across monsoonal Indonesia. The leading EOF of GSOD (16% explained 217 

variance) lacks similarity with its CMAP counterpart, and their PCs are not significantly correlated (r = 0.23). 218 

Nearby stations often have quite different loadings, such as over Java (Fig. 3c). By construction, the leading PC of 219 

SOND residuals is orthogonal to the leading PC of onset date. 220 

 221 

Figure 4 shows the spatial average of the cumulative rainfall anomalies (averaged over the 57 stations across 222 

Indonesia in the upper panel and the 14 stations of Western and Central Java in the lower panel) computed from 223 

August 1st and expressed as percentage relative to long-term mean for the 6 latest and earliest mean onset dates. A 224 

constant modulation of rainfall anomalies would lead to a straight horizontal line at the mean rainfall anomaly. The 225 

largest positive (negative) cumulative anomalies occurred in both cases before or around the early (late) onset dates 226 

while the curves usually tend to zero thereafter (Fig. 4). The spatially-averaged rainfall anomalies at the end of the 227 

rainy season, somewhere in March-April, are still consistent with the phase of the onset date but the amplitude of 228 
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these anomalies is weak (Fig. 4). It suggests that the strongest spatially-coherent signal at large-scale (Fig. 4a) and 229 

for a particular subset of stations (Fig. 4b) is before or near the onset date while it tends to cancel thereafter. 230 

 231 

c. Seasonal predictability of onset 232 

The substantial spatial coherence of onset date suggests seasonal predictability. To provide a measure of the latter, 233 

regression models are built using cross-validated CCA between July SST over the Tropical Pacific and Indian 234 

Oceans (80°–240°E, 20°N–20°S) as predictors, and GSOD or CMAP onset dates as predictands. Note that the 14% 235 

of missing entries in GSOD were firstly filled with a simple linear regression using the closest CMAP grid-point as 236 

predictor. The models were built using the Climate Predictability Tool (CPT) software developed at IRI ( 237 

http://iri.columbia.edu/outreach/software/); the predictor and predictand fields were prefiltered using EOFs, with the 238 

number of  modes retained determined by maximizing the model’s goodness-of-fit under cross-validation, with 5 239 

years withheld at a time. The leading 5 and 2 (1) EOF modes are retained in SST and CMAP (GSOD) and most of 240 

the cross-validated skill is associated with the leading CCA mode whose predictand pattern (i.e. SST pattern) is 241 

almost identical for CMAP and GSOD.   242 

 243 

Homogeneous correlation maps of the leading CCA mode are shown in Figs. 5a and 5b for SST and onset-date 244 

respectively. The SST anomaly structure (Fig. 5a) exhibits a classical ENSO pattern, together with high correlations 245 

around Indonesia, such that warm ENSO events are associated with delayed onset (Hamada et al., 2002; Hendon, 246 

2003). The corresponding structure in onset dates (Fig. 5b) indicates that the delayed onsets extend right across 247 

Indonesia, with high loadings over monsoonal Indonesia, decreasing weakly (strongly) toward eastern (northwestern) 248 

Indonesia. The regression model hindcast skill is plotted in Fig. 5c in terms of anomaly correlation, with regional 249 

averages given in Table 1 (last column). Skill values are highest over monsoonal Indonesia, exceeding 0.5** from 250 

southern Sumatera to southern Kalimantan and Timor, reaching 0.80*** for the SAI computed over all stations 251 

(0.70*** for CMAP). The sub-island subsets of stations in Table 1 achieve station-averaged skills ranging from 0.22 252 

(northern Sumatera) to 0.84*** (southern Kalimantan). The spatial variability of skill over Java could be due to 253 

random sampling but also to deterministic signals associated with small-scale orographic features and/or orientation 254 

relative to low-level winds.  255 

 256 
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4. Conclusion  257 

The spatial coherence of onset date and post-onset rainfall is analyzed from GSOD rain-gauges and the CMAP 258 

dataset. The onset date is defined using an agronomic approach, i.e. the first significant wet spell (here 40 mm in 5 259 

days) without any potentially damaging dry spell (here 10 days receiving less than 5 mm) thereafter (here in the 30 260 

post-onset days). This definition is best-suited for end-users purpose but suffers from the subjective choice of the 261 

parameters. Nevertheless, these parameters broadly reflect the needs and risks associated with major crops of 262 

Indonesia, such as lowland rice. The long-term mean onset dates, as well as the frequency of false starts are sensitive 263 

to these subjective parameters and future applications should carefully consider the impact of these choices on 264 

specific crops. However, for our main purpose of analyzing the spatial coherence of anomalous onset dates, the 265 

sensitivity to these parameters largely vanishes.  266 

 267 

The interannual variability of rainy season onset over monsoonal Indonesia is shown from both gridded pentad 268 

CMAP and daily station GSOD rainfall datasets to be characterized by a large-scale coherent signal, together with a 269 

moderate amount of local-scale noise (Figs. 1b & 2). Considering small subsets of GSOD stations recovers this 270 

signal, despite the complexity of the island topography (Table 1). The interannual anomalies are dominated by 271 

delayed onsets (Fig. 1b). Conversely, the spatial coherence of interannual rainfall anomalies beyond the onset date is 272 

weak, as revealed by the amount of rainfall in the 15- to 90- days after the onset and the SOND residuals from large-273 

scale onset (Table 2 & Fig. 3a). The leading EOF of post-onset 90-day CMAP amounts exhibits weak and rather 274 

inconsistent loadings over the main islands with high loadings restricted to eastern Indian Ocean and scattered 275 

patches of the northern and eastern margins (Fig. 3b). However, this signal is strongly consistent in sign with onset 276 

date in CMAP (i.e. late onset associated with smaller post-onset amount and vice versa). The leading EOF of SOND 277 

residuals from large-scale onset lacks consistency between the GSOD and CMAP datasets, but both nonetheless 278 

exhibit large spatially-coherent loadings over eastern Indonesia, but not over the eastern Indian Ocean (Fig. 3c). The 279 

spatial average of cumulative rainfall anomalies also exhibit their largest amplitudes before and near the onset date 280 

(Fig. 4), while the post-onset cumulative rainfall anomalies tend almost monotonically toward zero. There may thus 281 

be some predictability in post-onset seasonal amounts, but most of the spatially-coherent signal in SOND seasonal 282 

total, especially across islands, is merely related to the onset. 283 

 284 
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Our main finding is that most of the large-scale interannual signal of SOND seasonal rainfall total is conveyed by 285 

variations in the onset date of the rainy season. This implies that (i) rainfall monitoring at a small set of stations 286 

spread across Indonesia should be sufficient to establish interannual anomalies of onset date, and (ii) the scale of the 287 

interannual variability of the onset suggests a large scale forcing and potential seasonal predictability. Indeed large-288 

scale onset is found to be highly correlated with an ENSO SST pattern during July (Fig. 5a), i.e. at least one month 289 

and half before the mean local-scale onset date. A cross-validated CCA using July SST in tropical Indian and Pacific 290 

Oceans (80°–240°E, 20°N–20°S) as a predictor leads to promising skill values for the large-scale onset date (r = 291 

0.80*** for GSOD ; Fig. 5b). Further work is needed to examine the associated circulation changes and to 292 

investigate the roles of ENSO and Indian Ocean climate variability (Hendon, 2003).  293 

 294 

The spatial variation of hindcast skill (Fig. 5c) and onset EOF loadings (Fig. 2) warrants further study. Both exhibit 295 

maxima from southern Sumatera to southern Kalimantan—quite close to the Equator—and decreases gradually 296 

southward across Java and Sonde islands and more rapidly northward (Figs 2 & 5c, Table I). The latter decrease 297 

could be related to the year-round rainfall there (Aldrian and Susanto, 2003) and onset date should be viewed merely 298 

as an increase of the rainfall rather than the transition between a real dry and wet season. In that case, the onset date 299 

is sensitive to the subjective choices used to define it and is clearly less robust. This does not apply to monsoonal 300 

Indonesia south of 5°S. The highest EOF loadings and SST-related skill over southern Sumatera to southern 301 

Kalimantan coincide with the largest inter-quartile range of interannual variability (Table I). This subequatorial band 302 

is perhaps the most sensitive to the spatial shift of the ITCZ that probably triggers the onset of the rainy season. The 303 

complex orography across Java could also enhance the intra-regional noise even between close stations but we must 304 

also keep in mind that the spatial sampling is highest over Java (Fig. 1a). Similarly, the nature of spatial coherence 305 

for post-onset rainfall and SOND residuals over eastern Indonesia and the eastern Indian Ocean (post-onset rainfall 306 

only), as well as sea-land contrast needs further investigation using better sampled datasets and/or regional model 307 

simulations.  308 

 309 

The large-scale signal in onset is still strongly present in multi-station small sub-island regions (Table 1), indicating 310 

the potential to downscale the large-scale onset signal to the near-local scale. However, it is clear that individual 311 

stations exhibit considerable noise (Table 1). Thus, careful consideration needs to be given to the trade-off between 312 
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potentially more-accurate forecasts at the aggregated scale, versus local specificity for use in climate risk 313 

management. The large-scale nature of seasonal predictability of onset should enable improved agricultural planning 314 

in the future, together with better identification of false starts to the rainy season via real-time monitoring and short-315 

term forecasts of the large-scale evolving monsoon circulation. Forecasts of the Madden-Julian oscillation may lend 316 

an additional source of predictability at intraseasonal lead times (Wheeler and McBride, 2005). 317 

 318 
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Figure captions 371 

Figure 1: (a) Mean onset date computed in CMAP (shading) and GSOD (dot) as the first wet day of a 5-day 372 

sequence receiving > 40 mm from August 1st without a dry 10-day sequence receiving < 5 mm in the following 30 373 

days from onset. The name of each subset of stations is displayed. (b) Standardized onset date for western and central 374 

Java GSOD stations (dotted lines) with the average, i.e. Standardized Anomaly Index – SAI – (solid black line), 375 

together with the CMAP SAI (blue dashed line) and standardized leading PC time series (red dashed line) computed 376 

from all 128 CMAP gridpoints. The dashed horizontal lines delineate the 95% confidence interval of a set of 14 377 

white noise time series. Note that one standard deviation corresponds to an averaged deviation of  ~ 20 days for 378 

Western and Central Java. 379 

Figure 2: Leading empirical orthogonal function (EOF) of CMAP (shading) and GSOD (dot) onset dates, plotted as 380 

correlations with the principal component timeseries. The timeseries of onset date at each gridpoint were 381 

standardized prior to EOF analysis.  382 

Figure 3: (a) Individual standardized anomalies of rainfall total for the 90-day period after the local onset date at the 383 

128 CMAP gridpoints (dots) with the SAI (solid). The dashed horizontal lines delineate the 95% confidence interval 384 

of a set of 128 white noise time series. (b) Leading empirical orthogonal function (EOF) of post-onset 90-day 385 

amounts in CMAP (shading) and GSOD (dot). (c) Leading EOF of SOND residuals. Units in (b) and (c) are 386 

correlations with the respective principal component timeseries. 387 

Figure 4: Spatial average of cumulative rainfall anomalies (a) for all 57-stations and (b) 14-stations from western 388 

and central Java (Fig. 1a) computed from August 1st and expressed as percentage from the long-term mean for the six 389 

latest (in red) and earliest (in blue) onsets (computed from the spatial average of onset dates). The dashed line 390 

indicates each year and the full bold line indicates the mean of the 6 years. The time series are low-pass filtered with 391 

a Butterworth filter (cut-off frequency = 1/30 cycle-per-day). The asterisks indicate the station average onset date. 392 

Figure 5: Homogeneous correlation maps of (a) SST, and (b) onset date from CMAP (shading) and GSOD (circles), 393 

of the leading canonical correlation analysis (CCA) mode (c) MOS skill (i.e. correlation between observed and 394 

hindcast onset date) associated with the leading CCA mode between July SST and onset dates. 395 

 396 

397 
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Tables 398 

Table 1: Statistics of GSOD station onset date by sub-region (N is number of stations), computed from the 399 

Standardized Anomaly Index (SAI) of each region. The hindcast skill refers to the correlation between the observed 400 

and hindcast SAI with a cross-validated CCA using July SSTs as predictors. One, two and three asterisks indicate 401 

correlation significant at the two-sided 90%, 95%, 99% level according to a random-phase test (Janicot et al., 1996).  402 

 N 25%, 50% and 75% percentiles of the 
spatial average 

var [SAI] Correlation 
with large-

scale SAI of 
CMAP 

Correlation 
with PC#1 of 

CMAP 

Hindcast 
Skill 

Western and 
Central Java 
(W of 112°E) 

14 Oct 16, Oct 28, Nov 11 0.41 0.80*** 0.83*** 0.59*** 

Eastern Java 
(E of 112°E) 

7 Nov 13, Nov 21, Dec 2 0.44 0.74*** 0.72*** 0.61*** 

Southern 
Sumatera (S 
of 1°S) 

6 Sept 5, Sept 19, Oct 17 0.60 0.86*** 0.88*** 0.74*** 

Central 
Sumatera 
(between 1°S 
and 2°N) 

7 Aug 15, Aug 24, Aug 31 0.43 0.76*** 0.74*** 0.51** 

Northern 
Sumatera (N 
of 2°N) 

6 Sep 1, Sep 11, Sep 15 0.23 0.46** 0.41** 0.22 

Southern 
Kalimantan 
(S of 1°S) 

6 Sep 17, Sep 22, Oct 25 0.72 0.80*** 0.79*** 0.84*** 

Central 
Kalimantan 
(N of 1°S) 

5 Aug 11, Aug 29, Sep 12 0.48 0.70*** 0.69*** 0.46** 

Eastern 
Indonesia (E 
of 120°E and 
S of 8°S 

5 Nov 30, Dec 13, Dec 25 0.57 0.63** 0.60** 0.49** 

 403 
404 
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Table 2 :  Interannual variance of the Standardized Anomaly Index (Var[SAI]) of the 57 GSOD stations, and 128 405 

gridpoints of CMAP for local onset date, and post-onset 15-, 30-, 60-, and 90- day rainfall totals. Var[SAI] ranges 406 

between 0 (correlation of –1 between two equal-sized and perfectly covarying samples), 1/m (= 0.02 for m=57 and 407 

0.008 for m=128) where m is the number of locations for spatially independent variations, and 1 (perfect correlation 408 

between stations) (Moron et al., 2007). 409 

 Var(SAI) GSOD Var(SAI) CMAP 

Onset 0.30 0.31 

15-day 0.03 0.05 

30-day 0.03 0.08 

60-day 0.05 0.11 

90-day 0.06 0.14 

SOND  0.26 0.46 

SOND residuals 0.10 0.16 

 410 
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(a) CCA mode#1 in July SST
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