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Abstract45

The seasonal predictability of daily winter rainfall characteristics relevant to dry-land 46

management was investigated in the Coquimbo Region of central-northern Chile, with focus 47

on the seasonal rainfall total, daily rainfall frequency, and mean daily rainfall intensity on wet 48

days at the station scale. Three approaches of increasing complexity were tested.  First, an 49

index of the simultaneous El Niño-Southern Oscillation (ENSO) was regressed onto May-50

August (MJJA) observed precipitation; this explained 32% of station-averaged rainfall-51

amount variability, but performed poorly in a forecasting setting. The second approach used 52

retrospective seasonal forecasts made with three general circulation models (GCMs) to 53

produce downscaled seasonal rainfall statistics by means of canonical correlation analysis 54

(CCA).  In the third approach, a non-homogeneous Hidden Markov Model (nHMM) driven 55

by the GCM’s seasonal forecasts was used to model stochastic daily rainfall sequences. While 56

the CCA is used as a downscaling method for the seasonal rainfall characteristics themselves, 57

the nHMM has the ability to simulate a large ensemble of daily rainfall sequences at each 58

station from which the rainfall statistics were calculated. Similar cross-validated skill 59

estimates were obtained using both the CCA and nHMM, with the highest correlations with 60

observations found for seasonal rainfall amount and rainfall frequency (up to 0.9 at individual 61

stations). These findings were interpreted using analyses of observed rainfall spatial 62

coherence, and by means of synoptic rainfall states derived from the HMM. The downscaled 63

hindcasts were then tailored to meteorological drought prediction, using the Standardized 64

Precipitation Index (SPI) based on seasonal values, and the frequency of substantial rainfall 65

days (>15mm; FREQ15) and the daily Accumulated Precipitation Deficit. Deterministic 66

hindcasts of SPI showed high hit rates, with high Ranked Probability Skill Score for 67

probabilistic hindcasts of FREQ15 obtained via the nHMM. 68
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1. Introduction69

Climate variability can have serious social impacts in semi-arid regions, especially for 70

farmers who depend on rain-fed agriculture and on livestock production based on natural 71

vegetation.  In the Coquimbo Region in central-northern Chile, where rainfall amounts often 72

drop under the limit for crop growth, a lack of rainfall results in a crisis situation for society. 73

Over 2.6 million US Dollars was spent during 2007 to support affected families and farmers 74

in the Coquimbo Region, to repair damage, to recover degraded soils and to increase irrigation 75

programs (Chilean Ministry of Agriculture 2008, personal communication). Although these 76

measures reduced the negative effects of the 2007 drought, they did not address all affected 77

families due to budget limitations, nor did they increase preparedness and resilience to future 78

droughts. Of the 16 307 rural families in Chile seeking monetary aid to overcome the negative 79

aspects of the 2007 drought, more than 75% indicated suffering a lack of sufficient water for 80

irrigation, for domestic use, and they observed harvest losses for the crops grown for their 81

own consumption (Fondo de Solidaridad e Inversión Social (FOSIS) 2008, personal 82

communication). A typical problem here is the lack of preparedness prior to these natural 83

events, making any governmental action afterwards less cost effective. Despite the need, the 84

current Drought Alleviation Plan formulated by the Chilean Government for the region 85

(FOSIS 2008) does not include strategies for drought early warning, and the feasibility of 86

such a system has yet to be demonstrated.87

The El Niño Southern Oscillation (ENSO) is known to have a strong impact on winter rainfall 88

over central-northern Chile, with positive rainfall anomalies during El Niño events, and below 89

normal rainfall mostly associated with La Niña conditions (Aceituno 1988; Aceituno et al. 90

2009; Falvey and Garreaud 2007; Montecinos and Aceituno 2003; Pittock 1980; Quinn and 91
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Neal 1983; Rubin 1955; Rutllant and Fuenzalida 1991; Garreaud et al. 2009). However, the 92

associated seasonal predictability and forecast skill levels from current dynamical seasonal 93

prediction models (e.g. Goddard et al. 2003) have not yet been assessed in detail for the 94

statistics of local daily weather that are likely to be most pertinent to meteorological drought.95

In this paper we document the characteristics of daily winter rainfall from station 96

observations over the Coquimbo Region, and assess their seasonal predictability from three 97

current seasonal prediction general circulation models (GCMs), together with statistical 98

techniques to “downscale” and tailor the output from these relatively course resolution models 99

to the station scale. While GCMs typically misrepresent the characteristics of local daily 100

rainfall, statistical downscaling can often correct such biases and provide probabilistic rainfall 101

simulations that are well calibrated against local station data (Hughes and Guttorp 1994; 102

Robertson et al. 2009). Our analysis of the station rainfall data begins with a decomposition of 103

seasonal rainfall amounts into rainfall frequency and the mean rainfall amount falling on wet 104

days, i.e. the rainfall intensity. The correlation between rainfall data from stations separated 105

by increasing distances, i.e. the spatial “coherence,” for each of the seasonal anomaly types 106

(rainfall amount, intensity and frequency) across the region is then investigated. Spatial 107

coherence provides a measure of the potential seasonal predictability, because there is no a 108

proiri reason for the seasonal anomalies to differ between locations, except due to local scale 109

processes; Moron et al. (2007) argued that these are dominated by unpredictable noise over 110

homogeneous regions. From such analyses of seasonal anomalies, rainfall frequency at local 111

scale has been shown to be generally more spatially coherent in the tropics, and thus 112

potentially more predictable on seasonal time scales (Moron et al. 2007), but it has not 113

heretofore been investigated for the midlatitudes such as is done in this study. For a 114

climatically homogeneous region, even in regions of complex terrain like Coquimbo, high 115
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spatial coherence would be an indicator of potential predictability, although the reverse is not 116

necessarily the case. 117

To gain insight into the nature of the daily rainfall variability and its year-to-year 118

modulations in more detail, we model the sequences of station rainfall in terms of different 119

daily rainfall patterns, or ‘rainfall states’, as determined by a hidden Markov model (HMM). 120

The HMM can simulate stochastic daily sequences of rainfall occurrence with a specific 121

rainfall intensity, by estimating the transition probabilities between daily weather patterns or 122

states. The Markov property requires that the probability of occurrence of a particular state on 123

a given day only depends on the previous day’s state.  The set of states needed to describe the 124

local daily rainfall characteristics are determined from observed rainfall records; the states are 125

not directly observed and are as such ‘hidden’. In the homogeneous HMM, the transition 126

probabilities from one state to the other are not allowed to vary in time. In its non-127

homogeneous form (nHMM), the transition probability between states can vary in time, 128

allowing external inputs to influence the rainfall characteristics between one year and another. 129

Seasonal GCM predictions can be used to determine these inputs, creating an effective 130

method to downscale them to most probable daily rainfall sequences at the station scale, 131

training the nHMM on each year for which GCM seasonal hindcasts are available (Charles et 132

al. 1999; Robertson et al. 2004, 2006, 2009). Encouraging results were reported by Bellone et 133

al. (2000), who used a combined climate index, including wind, temperature and relative 134

humidity fields, together with a nHMM to construct a model for daily rainfall amounts. In 135

addition to probabilistic downscaling using the nHMM, we apply a simpler method based on136

canonical correlation analysis (CCA) to the seasonally-averaged statistics themselves 137

(seasonal amount, daily rainfall frequency, and mean daily intensity), in order to obtain 138
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downscaled estimates of their seasonal predictability.  139

The work in this paper aims to lay the foundations for constructing (meteorological)140

drought early warning systems, through analyses of daily rainfall and by estimating seasonal 141

predictability. The rainfall data and GCMs are described in Sect. 2, with the statistical 142

methods outlined in Sect. 3. The results of the station rainfall analyses and retrospective 143

forecasts of drought indices are presented in Sect. 4, with the concluding remarks in Sect. 5.144

2. Data145

a. Observed rainfall data146

The analysis of daily rainfall was based on data from 42 stations in the Coquimbo Region, 147

obtained from the Chilean Water Authority (DGA) covering the period 1937–2006. However, 148

it should be noted that data series were only available for a limited number of stations (<13)149

during the first part (1937–1958) of this period, reaching 38 stations from 1990 onwards 150

(Fig.1). 151

Figures 2 and 3 show the seasonality and spatial distribution of rainfall, together with a 152

decomposition of seasonal rainfall amount into the frequency of occurrence of daily rainfall, 153

and the mean daily intensity of rainfall on wet days (>1 mm). A distinct wet season covering 154

the period May-August (MJJA) accounting for 85% of the annual rainfall amount was 155

identified in the data set (Fig. 2) and was used for further analysis. Rainfall intensities were on 156

average higher during the wet season, with maximum daily rainfall amounts observed 157

between 100 and 207 mm in 22% of the years. In terms of the seasonality within the MJJA 158

season, average rainfall intensities show little within-season systematic modulation, while 159

rainfall frequency shows a clear seasonal modulation with a peak in July.160
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Spatial rainfall characteristics in the Coquimbo region for this period are given in Fig. 3, 161

indicating clear geographical modulation of rainfall. Seasonal rainfall amounts range between 162

43 mm in the north and 270 mm in the pre-Andean cordillera respectively (at 840 m above sea 163

level), tending to increase eastward towards the Andes, due to orographic effects, and from 164

north to south, due to an increased influence of the midlatitude storm track. Rainfall frequency 165

is very low, ranging from 4 to 13 wet days per season on average, and is more geographically 166

modulated than mean rainfall intensity (range of 10 – 24 mm per day). The larger spatial 167

variation of rainfall frequency compared to mean intensity is consistent with the smaller 168

within-season monthly modulation of the latter in Fig. 2, and with the frontal nature of winter 169

rainfall over the region (Aceituno 1988).170

b. Seasonal forecast models171

Retrospective seasonal MJJA precipitation forecasts initialized on April 1 were obtained from 172

three GCMs: the European Centre Hamburg Model (ECHAM 4.5) (Roeckner et al. 1996), the 173

National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFS) (Saha 174

et al. 2006) and the Community Climate Model (CCM 3.6) (Hurrell et al. 1998). The ECHAM 175

and CCM are atmospheric GCMs that are both driven with the same constructed-analog (CA) 176

predictions of global sea surface temperature (SST) in a two-tiered approach (Li and Goddard 177

2005). The two-tier approach has been used as the basis of the International Research Institute 178

(IRI) operational seasonal forecast system since 1997 (Barnston et al. 2010), while studies 179

indicate comparable predictive performance of one- and two-tier approaches (Kumar et al.180

2008). We thus refer to them in the following as ECHAM-CA and CCM-CA respectively. 181

The CFS is a coupled ocean-atmosphere GCM with initialization of the atmosphere, ocean 182

and land-surface conditions through data assimilation. For all models, the ensemble mean 183
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(over 24 members for ECHAM and CCM and 15 members for CFS) gridded precipitation was 184

used at a resolution of T62 (~1.9o) for CFS and T42 (~2.8o ) for ECHAM-CA and CCM-CA, 185

over the domain 20°–40°S and 65°–85° W. Seasonal MJJA precipitation hindcasts were 186

available for the 1981–2002 period for CCM-CA and ECHAM-CA, and for the 1981–2005 187

period in the case of CFS.188

3. Statistical methods189

a. Spatial coherence analysis190

Estimates of spatial coherence of interannual rainfall station anomalies are used as indicators 191

of potential seasonal predictability following Moron et al. (2007). The number of spatial 192

degrees of freedom (DOF) gives an empirical estimate of the spatial coherence in terms of 193

empirical orthogonal functions (EOFs), with higher values denoting lower spatial coherence:194

∑
=

= M

j
je

MDOF

1

2

2

(Eq. 1)195

where ej are the eigenvalues of the correlation matrix formed from the station seasonal-mean 196

time series and M is the number of stations.197

A second measure of the spatial coherence of interannual anomalies is given by the 198

interannual variance of the Standardized precipitation Anomaly Index (var[SAI]), which is 199

constructed from the station average of the standardized rainfall anomalies (Katz and Glantz 200

1986):201



9

[ ] ( )












 −
= ∑

=

M

j j

jij
i

xx
M

SAI
1

1varvar
σ

(Eq. 2)202

where jx is the long-term time mean over i=1,..,N years and σj is the interannual standard 203

deviation for station j. The var[SAI] is a maximum when all stations are perfectly correlated 204

(var[SAI]=1) and a minimum when the stations are uncorrelated, resulting in a var[SAI]=1/M.205

b. Hidden Markov Model (HMM)206

A state-based Markovian model was used to model daily rainfall sequences at the 42 stations, 207

in order to gain insight into the daily rainfall process, and as a means to downscale daily 208

rainfall sequences (downscaling in space and time). We use the approach developed by 209

Hughes and Guttorp (1994) for rainfall occurrence, while additionally modeling rainfall 210

amounts. The hidden Markov model used here is described fully in Robertson et al. (2004, 211

2006). In brief, the time sequence of daily rainfall measurements on the network of stations is 212

assumed to be generated by a first-order Markov chain of a few discrete hidden (i.e. 213

unobserved) rainfall “states”. For each state, the daily rainfall amount at each station is 214

modelled here by a delta function at zero amount to model dry days, and an exponential to 215

describe rainfall amounts on days with nonzero rainfall.  To apply the HMM to downscaling 216

rainfall state transition probabilities were allowed to vary with time, resulting in the 217

nonhomogeneous HMM (nHMM).   In this study, transition probabilities between states are 218

modelled as functions of predictor variables, in our case GCM predictions of MJJA seasonal-219

average precipitation over the region [5oS–40oS, 100oW–50oW]. For data compression, a 220

conventional principal components (PC) analysis was first applied to the gridded seasonal-221

averaged GCM precipitation fields, with each gridded precipitation value standardized by its 222
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interannual standard deviation at that gridpoint, selecting here the leading PC as the input 223

variable to the nHMM. The nHMM was trained under leave-three-years-out cross-validation, 224

using the CFS 15-member ensemble mean. To make downscaled simulations, we used each 225

CFS ensemble member in turn, and generated 10 stochastic realizations for each one, yielding 226

an ensemble prediction of 150 daily rainfall sequences for each MJJA season, providing a 227

probabilistic forecast (Robertson et al. 2009).228

The seasonal statistics of interest (seasonal amount, daily rainfall frequency, and mean daily 229

intensity on wet days) were then computed from these simulated rainfall sequences and 230

compared to their observed counterparts at each station.231

c. Downscaling of seasonal forecasts using canonical correlation analysis (CCA)232

In addition to the nHMM, downscaling was also carried out by applying canonical correlation 233

analysis (CCA) directly to the seasonal rainfall statistics of interest. The CCA regularizes the 234

high-dimensional regression problem between a spatial field of predictors and predictands by 235

reducing the spatial dimensionality via principal component (PC) analysis and thus minimizes 236

problems of overfitting and multicolinearity (Tippett et al. 2003). Cross validation was used to 237

determine the truncation points of the PC and CCA time series, via the Climate Predictability 238

Tool (CPT) software toolbox (http://iri.columbia.edu/outreach/software/). As predictor data 239

sets the retrospective seasonal MJJA precipitation forecasts by the three GCMs discussed in 240

section 2b were used in conjunction with the MJJA seasonal rainfall at the 42 stations of the 241

Coquimbo Region. The three CCA models were trained and tested over the 1981–2000 242

period, with a cross-correlation window of 5 years (i.e. leaving out two years on either side of 243

the verification value). As employed here, the CCA provides a deterministic mean forecast 244
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value, in contrast to the nHMM probabilistic ensemble. 245

4. Results246

a. Spatial coherence of rainfall anomalies247

As a first step towards assessing the seasonal predictability of rainfall at local scale, we begin 248

with an analysis of spatial coherence, for each of the three rainfall characteristics: seasonal 249

amount, rainfall frequency, and mean daily intensity. Based on Fig. 3, spatial coherence 250

estimates were made separately for the three provinces (from north to south: Elqui, Limari 251

and Choapa) and for three altitude classes (from west to east: 0–500 m, 500–1500 m and 252

>1500m) (Fig. 3). Table 1 shows both the Degrees of Freedom (DOF) and the variance of the 253

Standardized Anomaly Index (SAI) for these sub data sets. The highest DOF and lowest 254

var[SAI] was observed for the Elqui Province in the north, indicating lowest spatial coherence 255

of seasonal anomalies, consistent with its more arid nature and more sporadic rainfall. A 256

similar tendency was found when looking at altitude influences, with lowest spatial coherence257

at highest altitudes (>1500m), due to orographic influences on rainfall variability. 258

The dependence of spatial coherence characteristics was analysed as a function of time scale 259

using station autocorrelation. Fig. 4 shows the averaged Pearson correlation between each 260

station pair plotted against distance, for rainfall amount, intensity and frequency averaged 261

over several different time windows from daily to seasonal. Taking a value of 1/e (0.37) as the 262

decorrelation distance (Dai et al. 1997; Moron et al. 2007; New et al. 2000; Ricciardulli and 263

Sardeshmukh 2002; Smith et al. 2005), anomalies of rainfall amount were found to be 264

significantly correlated at all temporal scales for all stations in the region. A similar 265

observation can be made for rainfall intensity. Rainfall frequency is uncorrelated beyond 150 266
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km for the daily and 2-daily time scales, but becomes more highly correlated on longer time 267

scales.  This increase in spatial correlation on longer time scales is also found for rainfall 268

amount, but not for intensity. Similar findings were reported by Moron et al. (2007) for 269

tropical rainfall, where it was argued that this increase toward the seasonal scale indicates a 270

common regional seasonal climate forcing on these two rainfall characteristics. Thus, while 271

the occurrence and amount of rainfall at individual stations contain a random element on any 272

particular day, this locally-random element becomes averaged out in time because (a) the 273

atmospheric synoptic storms that impact the region are large-scale and tend to persist over 274

several days (Figs. 6 and 7 below) impacting most stations, and (b) the large-scale impact of 275

ENSO is at the seasonal scale (Sect. 4c below). The spatial autocorrelation function is near-276

linear and time integration makes the stations more coherent, indicating that the seasonal 277

function is a superposition of daily and seasonal effects, and also that the daily rainfall shows 278

an organized, regional pattern repeated across the season. 279

In contrast to rainfall occurrences and amounts, rainfall intensity does not exhibit any increase 280

in coherence when integrated over time and appears just as coherent at the daily scale. A 281

distance of 200 km could be identified as the decorrelation distance for rainfall intensities 282

between two stations in the Region. This is much larger than found by Moron et al. (2007) in 283

the tropics, but is consistent with the advective character of rainfall in the Coquimbo Region, 284

associated with extratropical cyclones with large spatial scales (Montecinos and Aceituno 285

2003). The examination of spatial coherence statistics in this sub-section indicates that 286

seasonal rainfall amounts and frequencies are likely to be more predictable than mean daily 287

rainfall intensities. However, the differences in spatial coherence between these three seasonal 288

quantities is somewhat less than that found by Moron et al. (2007) in tropical regions. 289
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b. Daily rainfall states290

Given the high spatial coherence of rainfall in the Region, we next look in more detail at the 291

evolution of daily rainfall by identifying a small set of typical daily rainfall states (or patterns) 292

and the transitions between them from day to day, using a hidden Markov model. To identify 293

an appropriate number of rainfall states, the log-likelihood of HMMs was computed under 294

cross-validation with up to 10 states, resulting in an increase in log-likelihood for a small 295

number of states, levelling off at higher numbers. This is typical because the rainfall process 296

in nature is more complex than the simple HMM, so that models with more parameters fit the 297

observed rainfall data better, even under cross-validation. For diagnostic purposes, however, 298

we seek a model with a small number of states for interpretability, and a model based on four 299

rainfall states was thus chosen as a compromise. Using the maximum likelihood approach, the 300

HMM parameters were estimated from the entire data set of 7872 days, measured at the 42 301

rainfall stations, applying the iterative expectation-maximization (EM) algorithm (Dempster 302

et al. 1977; Ghahramani 2001). The algorithm was initialized 10 times from random seeds, 303

selecting the run with the highest log-likelihood.304

The four rainfall states thus obtained are shown in Fig. 5 in terms of their rainfall, showing the 305

probability of rainfall occurrence at each station (panels a–d), and the average rainfall 306

intensity on wet days (panels e–h). States were ordered from overall driest to wettest, showing 307

a dry state 1 with rainfall probabilities near zero at all stations, and three states with increasing 308

probabilities for rainfall and generally larger rainfall amounts on wet days. The spatial pattern 309

of State 2 resembles that of the mean characteristics seen in Fig. 3, with more-frequent rainfall 310

in the south and at higher altitudes. State 3 represents the rainfall events where rainfall is 311

probable at most locations excluding the most northern ones, while rainfall intensities remain 312
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relatively small. State 4 can be interpreted as the ‘very wet’ state, with high rainfall 313

probabilities over the whole region, and large rainfall intensities. 314

When looking at the matrix of day-to-day transition probabilities between the four states 315

(Table 2), it can quickly be seen that state 1 is the most persistent state, but it is also the state 316

to which the wetter states 2 and 3 are most likely to evolve. State 4, the very wet state, has an 317

almost equal probability for each of the states to follow it, indicating that states 2 and 3 tend 318

to be intermediate in the transitions from a wet period to a dry period.  319

A visual interpretation of the temporal evolution is given in Fig. 6, showing the most probable 320

daily sequence of the four states that occurred over the 70-winter record (1937-2006) of daily 321

rainfall, obtained using the dynamical programming ‘Viterbi’ algorithm (Forney 1978). Once 322

the parameters of the HMM have been estimated from the rainfall data, the Viterbi algorithm 323

uses the HMM state parameters in conjunction with the rainfall data to assign each day of the 324

historical record to a particular state. This resulted on average in 105 days per season of state 325

1 (85.4%), 10 days of state 2 (7.7%) and 5 days of state 3 (4.2%). The ‘very wet’ state 4 326

occurred on only 3 days (2.7%) on average during each MJJA season of the 70-year period, 327

but on average 56% of total seasonal rainfall was observed on these days. The horizontal 328

traces in Fig. 6 illustrate graphically the high intermittency of rainfall over the region, with 329

individual rainfall events often lasting several days and being made up of days from several of 330

the wetter states. On average, no obvious seasonality is apparent across the season.331

Figure 7 shows composite sea-level pressure (SLP) fields from the NCEP-NCAR reanalysis332

data (Kalnay et al. 1996), made by averaging over the days falling into each state, plotted as 333

an anomaly from the long term MJJA average. The state SLP anomaly patterns demonstrate 334

the well-known relationship between rainfall in central Chile and synoptic-wave 335
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disturbances (Falvey and Garreaud, 2007). The wet states 2–4 are associated with a similar 336

wave pattern with an anomalous trough over the Chilean coast extending east of the Andes, 337

but with increasing trough intensity as a function of rainfall, while the dry state 1 (note finer 338

contour interval in Fig. 7a) has the opposite footprint of anomalous anticylonic conditions 339

over central Chile. The tendency seen in the state sequence for multi-day persistent rainfall 340

events made up of several states (Fig. 6) suggests this anomalous low pressure pattern, once 341

established, often remains approximately stationary while growing and decaying in situ. 342

c. ENSO influence on seasonal rainfall characteristics343

The interannual variability over the Coquimbo Region can be interpreted in terms of the 344

HMM’s state sequence, with more instances of the wetter states during wet winters.  Before 345

proceeding with that analysis, we first summarize the well-known ENSO influence on the 346

seasonal statistics of rainfall (MJJA amount, rainfall frequency, and mean daily intensity) 347

averaged over all 42 stations. The relationship between seasonal rainfall amounts and ENSO 348

is plotted in Fig. 8 in terms of the Niño 3.4 index. All but one (the year 1984) of the very wet 349

winters (> 100mm above average rainfall) have been associated with the warm ENSO phase, 350

with all of these ENSO events in their developing phase over the MJJA season. The cold 351

ENSO phase has almost always been associated with below normal rainfall, although several 352

years have less than normal rainfall without strong La Niña characteristics. The Pearson 353

correlation between Niño 3.4 and MJJA rainfall amount for the entire period 1937–2006 is 354

0.57, which is statistically significant at the 99% level according to a two-sided Student test. 355

The Spearman correlation coefficient, that is less sensitive than the Pearson correlation to 356

strong outliers, was lower (0.45), but still significant. When only ENSO years are included, as 357

defined by those years where 50% of the MJJA months were marked as ENSO using the 358
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Bivariate ENSO or BEST Index (Smith and Sardeshmukh 2000), the Pearson correlation 359

increases to 0.80, which is indicative for the strength of the ENSO signal in extreme wet or 360

dry years. The Spearman correlation coefficient was 0.75, suggesting only a limited influence 361

of outliers.362

Table 3 shows the correlations between the observed station-averaged MJJA rainfall amount, 363

frequency and intensity and the cross-validated hindcasts from multiple linear regressions 364

with the Niño 3.4 index averaged over different time periods as a predictor. Correlations are 365

strongest when the Niño 3.4 index is contemporaneous or follows the MJJA season, consistent 366

with the so-called ENSO spring predictability barrier around May; once established during 367

boreal summer, ENSO events tend to persist into the following boreal fall. The hindcasts with 368

the FMAM averaged Niño 3.4 index or even for individual months March, April and May, 369

were only weakly correlated with the MJJA total rainfall data, with Pearson correlations of 370

0.26, 0.15, 0.32 and 0.44 respectively, limiting the prediction potential of the Niño 3.4 index. 371

Similar behaviour was found for rainfall frequency, with highest Pearson correlation for the 372

contemporaneous period, whereas rainfall intensity was weakly correlated when using the 373

ENSO index as a predictor for all periods considered (Table 3). 374

d. ENSO influence on rainfall states375

Year-to-year variations in the frequency of the four rainfall states were correlated with the 376

MJJA-average Niño 3.4 index, resulting in Pearson correlation coefficients of -0.44, 0.27, 377

0.18 and 0.52 respectively (all are significant at the 95% level, except for state 3). Thus the 378

ENSO relationship discussed above is mostly expressed in terms of the frequency of 379

occurrences of states 1 and 4. This is remarkable, given the small number of days falling into 380
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state 4 and its association with the most-intense storms, and demonstrates the strong 381

relationship between El Niño and intense storms in central Chile.  382

El Niño events tend to weaken the subtropical anticyclone and to displace the frontal storms 383

to more northern locations than normal with a blocking of their usual path further to the south384

(Garreaud and Battisti 1999; Rutllant and Fuenzalida 1991). This is consistent with our 385

finding of a positive correlation between the occurrence of the three wet states and the ENSO 386

index. When evaluating wet years, Rutllant and Fuenzalida (1991) found that a low-pressure 387

zone becomes established over Central Chile and Northwestern Argentina, separating the 388

Pacific anticyclone from the Atlantic high pressure area, which is consistent with the observed 389

atmospheric circulation patterns observed for states 2 to 4 that exhibit an anomalous synoptic 390

trough between 30o–40oS, and a ridge to the south (Fig.7).391

e. Seasonal prediction of daily rainfall aggregates392

Given the impact of ENSO on Coquimbo-region rainfall documented in the previous sub-393

sections, we next explore the seasonal predictability of the observed rainfall based on GCM 394

retrospective forecasts. In this subsection we consider the seasonal aggregate scale, using the 395

canonical correlation analysis (CCA) described in Sect 3c, to regress the GCM seasonal-396

average rainfall predictions onto the observed station seasonal rainfall statistics presented in 397

Sect 4c. Scatterplots of the cross-validated seasonal rainfall deterministic forecasts are shown 398

in Fig. 9 over the hindcast period (1981–2000) for each of the three GCMs, where each circle 399

represents the forecast mean of the seasonal rainfall amount for each station-year. A clear 400

deviation from the 1:1 line is observed for the ECHAM-CA model, indicating clear 401

underestimation of the higher rainfall amounts observed during wet years. The CCM-CA 402

model shows an overestimation at the lower rainfall amounts, while failing to predict the 403
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more extreme rainfall values. The CFS model performs best, showing the least scatter as well 404

as quite successful predictions in the higher range of rainfall amounts. This is confirmed by 405

Table 4, which gives the station-averaged root mean square error (RMSE), mean error or bias 406

(ME), and Pearson anomaly correlation coefficients for each of the model (cross-validated) 407

retrospective forecasts of station precipitation. The CCM-CA gave the lowest correlation and 408

the highest RMSE, but was the least biased, with a low ME. Correlation was higher for the 409

ECHAM-CA, but ME and RMSE indicated an important bias in comparison to the other 410

models. The CFS model showed the highest correlation coefficient and a low RMSE, but with 411

a negative ME, underestimating the observed rainfall amounts at the highest observed rainfall 412

amounts (e.g. 36% at 500mm). Nevertheless, the CFS model was selected for further 413

processing, due to its superior correlation statistics. Since seasonal MJJA hindcasts for the 414

period 1981-2005 were available for the CFS model, this period was used for further analysis.415

The Pearson correlation skill map from CFS for all stations (Fig. 10) shows a good correlation 416

between observed and hindcast precipitation for almost all stations, with individual 417

correlations between 0.57 and 0.80. This could be expected, due to the high skill (R was 0.76) 418

of the CFS to predict Niño 3.4 SST, when initialized on April 1, and a high correlation (R of 419

0.82) between the leading PC of the gridded CFS rainfall and Niño 3.4 SST, that explains 420

large part of the variability in rainfall amounts observed (see Fig. 8). A similar picture 421

emerges for rainfall frequency, with slightly lower Pearson skill (0.20–0.63), while the 422

correlation coefficients for rainfall intensity are generally much lower (from -0.15 until 0.64).423

f. Seasonal prediction of stochastic daily rainfall sequences 424

Having addressed the seasonal predictability of daily rainfall aggregates (seasonal amount, 425

rainfall frequency, and mean daily intensity) in the previous subsection, we next use the426
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nHMM as described in Sect. 3b to derive seasonal forecasts of daily rainfall sequences at each 427

of the stations. The nHMM used here builds on the HMM results presented in Sect 4b and 4d, 428

but with the inclusion of CFS forecasts of MJJA seasonal-average precipitation, as described 429

in Sect. 3b. This is the same CFS predictor field used via CCA in the previous subsection. 430

The resulting daily rainfall simulations were then used to construct the seasonal rainfall 431

amount, rainfall frequency, and mean daily intensity, and the ensemble averages then 432

correlated with observed values (Fig.11). As in the case of the CCA-based forecasts in Fig. 433

10, correlations were generally higher for seasonal rainfall amount and rainfall frequency, 434

compared with rainfall intensity, with station values ranging from 0.17–0.92, 0.19–0.92 and 435

-0.38–0.84 for the three quantities respectively. Inter-station differences in skill are larger than 436

in the CCA approach, but fewer stations with negative correlations were obtained using the 437

nHMM (note that only positive values are plotted in Figs. 10 and 11).438

Time series of the station-averaged MJJA seasonal rainfall statistics are plotted in Fig. 12, 439

which compares the median and interquartile range of the 150-member ensemble of nHMM 440

simulations, together with the observed values and CCA-based hindcasts. The hindcasts of441

seasonal rainfall amount obtained using both methods (CCA and nHMM) follow the observed 442

highs and lows reasonably well (Fig. 12a), with a Pearson correlation skill for the CCA of 443

0.77 and for the nHMM mean of 0.62. A small overestimation for the nHMM low rainfall 444

amount years is observed, as well as an underestimation when dealing with very wet years, 445

and can be attributed to the deviations observed between the CFS model predicted and 446

observed precipitation (Table 4 and Fig. 9). 447

The rainfall frequency hindcasts from the nHMM were also skillful (ρ=0.55), representing the 448

observed interannual variability better than for rainfall intensity (ρ=0.30). The 449
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underestimated mean rainfall intensities in 1984 resulted in an important underestimation of 450

the seasonal rainfall amount for nHMM, while the CCA hindcast of seasonal amount was less 451

affected. The year 1983, on the other hand, had more rainfall days than picked up by the 452

nHMM and CCA, but with low intensities, still resulting in acceptable predictions of the 453

seasonal rainfall amount with both methods.454

g. Towards a Drought Early Warning System 455

Although no effort was made to design or setup a drought early warning system for the 456

Coquimbo Region, this paper tries to identify the prediction potential of meteorological 457

drought indices that would be essential to such an effort. In order to tailor our rainfall 458

hindcasts more specifically to drought indicators, we firstly express our hindcasts in terms of 459

the Standardized Precipitation Index or SPI (Edwards and McKee 1997; McKee et al. 1993), a 460

commonly used meteorological drought classification method. The SPI is derived by 461

transforming the probability distribution of (here seasonal amount) rainfall into a unit normal 462

distribution so that the mean SPI is zero and each value is categorized in one of its 5 quantiles 463

and as such given a ‘drought class’.  The SPI hindcasts derived from the CFS using the CCA 464

and nHMM methods are shown in Fig. 13, together with those derived from the 465

(simultaneous) regression with MJJA Niño 3.4 SST. Each of the methods was able to 466

represent observed SPI variability rather well, although different SPI classes were often 467

predicted. This is reflected in Table 5, where fits between observed and simulated SPIs are 468

expressed in terms of ρ, ME, RMSE and hit rate. None of the prediction models showed a 469

significant bias, due to the standardization of the SPI, and the Pearson correlation values are 470

similar to those of the seasonal rainfall amount. The hit rate measures the success of the 471

method to predict the SPI class, and substantially exceeds the 20% rate expected by chance. 472
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When interested in general trends, the hit rate might be too strict to evaluate the prediction 473

skill. For example, for the year 1987 CCA and nHMM predicted SPI values of 2.1 and 2.6 474

respectively (‘extremely wet’), whereas the observed SPI value was 1.8 (‘very wet’), reducing 475

the hit score although the prediction was rather accurate. When accepting model predictions 476

that are one SPI class lower, equal to or one class higher than the observed SPI class,  the hit 477

rate increased to values of 92%, 92% and 88% for the ENSO Index, the CCA method and the 478

nHMM respectively,  indicating that the general trend (dry, wet or normal) is maintained by 479

the three methods.480

In a second approach, the nHMM hindcasts of daily rainfall series were converted into four 481

daily drought indices and compared with observed values. As a first index, the frequency of 482

days with substantial rainfall (>15 mm per day) was used to classify years with drought risk, 483

hereafter named FREQ15. A second set of drought indices based on daily rainfall were 484

derived from the work of Byun and Wilhite (1999), using the Effective Precipitation (EP) 485

concept to represent the soil water storage at each day during the wet season. After evaluating 486

all proposed indices, three were retained, based on their higher sensitivity to observed drought 487

in the region. The first is the Accumulated Precipitation Deficit (APD), which gives a simple 488

accumulation of daily precipitation deficit from May to August, and was found to be a good 489

measure for drought intensity. The second is the Accumulation of Consecutive days of 490

Negative Standardized EP, further named ANES, and is a measure for accumulated stress 491

during droughts (Byun and Wilhite 1999). The last is the Effective Drought Index or EDI, 492

which gives a drought classification similar to the SPI, with positive values indicating surplus 493

rainfall and negative values dry or drought conditions. 494

In general, the drought indices obtained from the nHMM cross-validated hindcasts closely 495
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followed the observed indices for the period 1981–2005. The fit proved best for the FREQ15 496

and the APD index (ρ=0.63 and 0.60 resp.), compared with the EDI and ANES (ρ= 0.51 and 497

0.50). The observed versus predicted values of FREQ15 and APD are plotted in Fig. 14, 498

which shows the median and the inter-quartile range (IQR) of the nHMM ensemble, showing 499

information about the predicted distributions.  The spread of the forecasts can be evaluated in 500

terms of the IQR, which should bracket the observations in 50% of the years to be well 501

calibrated, with lower values indicating too little spread and with values above 50% for those 502

forecast distributions with too much spread. For both drought indices, the inter-quartile range503

brackets the observed values in 44% and 52% of the years respectively, indicating that the 504

forecasts are rather well calibrated.505

To quantify the skill of these probabilistic forecasts, the Ranked Probability Skill Score 506

(RPSS) is used, which is a squared error metric that allows measuring the distance between 507

the cumulative distribution function of the forecast and the verifying observation, and is 508

expressed with respect to a baseline given by the climatic forecast distribution. A perfect 509

forecast would be represented by a RPSS of 100%, while negative values indicate that the 510

forecast is less skillful than the climatological equal-odds forecast. For the four indices under 511

consideration, the station average median RPSS values were 25.2 for FREQ15, 12.3 for APD, 512

12.7 for EDI and -2.6 for ANES, indicating better than climatology forecasts in the former 513

three cases. Additionally, the percentage of positive RPSS values were found to be 84%, 80%, 514

64% and 48% respectively, confirming the better predictability of FREQ15 and APD, and 515

lower predictability for EDI and ANES. In Fig 15 the median RPSS is presented for each 516

station for FREQ15 and APD, showing similar results as the station average, with few areal 517

differences, but suggests a superior predictability of FREQ15 compared to APD. 518
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Both indices can also be related to declared drought years in the Coquimbo region (Novoa-519

Quezada 2001), as defined by seasonal rainfall amounts not exceeding a minimum threshold 520

to recharge the topsoil during the wet season (e.g. 207 mm in the Southwestern part of the 521

Coquimbo Region), when evaluated with a regional water balance method. Since both 522

FREQ15 and APD showed a correlation of 0.87 with declared drought years, their relatively 523

good predictability is especially encouraging for climate risk management purposes. 524

5. Summary and conclusions for dry-land management525

Rainfall variability is known to be a major economic and social disruptor in the central-526

northern area of Chile, with large financial consequences for society when both extreme 527

drought and extreme wet conditions occur. A low preparedness could be partly responsible for 528

the large impact of these events. Therefore, the Chilean government has supported the 529

development of a climate risk management system for the semi-arid regions of Chile, to 530

reduce the vulnerability and increase resistance to extreme climatic events. An early warning 531

system for droughts and floods would be an essential component of such an approach, which 532

requires estimation and prediction of the rainfall characteristics relevant to drought as a first 533

step. 534

Winter rainfall characteristics in the Coquimbo Region of Chile were first investigated535

using daily rainfall records at 42 stations, with special attention to spatial and temporal 536

characteristics and the relationship with ENSO. Seasonal rainfall amounts, daily rainfall 537

frequencies, and mean daily rainfall intensities all generally increase southward and eastward 538

toward the Andes (Fig. 3). An analysis of the spatial correlations between stations (Fig. 4) 539

indicated large inter-station correlations at the daily timescale, particularly for rainfall 540

amount. The spatial coherence of rainfall amount and frequency was found to increase 541
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substantially with temporal averaging, suggesting the role of ENSO forcing at the seasonal 542

scale. Seasonal anomalies of mean daily rainfall intensity were found to be less spatially 543

coherent (Table 1), though their coherence was larger than found by Moron et al. (2007) for 544

tropical rainfall, due to the frontal character of rainfall in the region. 545

The spatio-temporal evolution of daily rainfall patterns across the region was further 546

elucidated in terms of four rainfall “states” identified using a Hidden Markov Model (HMM); 547

these states consisted of dry and increasingly wet conditions (Fig. 5), the latter associated with 548

near-stationary trough in sea-level pressure, centered to the south and east of the region (Fig. 549

7). The daily sequences of these states showed sporadic rainfall events with little seasonality 550

within the winter season (Fig. 6), while the likelihood of an intense storm across the region 551

(state 4) was found to be strongly correlated with ENSO, thus providing an interpretation in 552

terms of daily weather for the well-established seasonal rainfall relationship with ENSO (Fig. 553

8).554

Seasonal predictability of rainfall characteristics was explored firstly using a simple univariate555

index of ENSO; this proved only to be well correlated for simultaneous (May or MJJA) 556

values of the index, and thus not useful for prediction since lead times are insufficient for 557

drought prediction. Rainfall intensities were found not to be well correlated. Predictability 558

was further explored using a GCM to forecast MJJA rainfall amounts. In our approach, the 559

GCMs were initialized with April 1 climate and/or oceanic conditions of each year 1981–560

2005, presenting as such a real prediction with lead times up to four months. Of three the 561

GCMs considered (ECHAM-CA, CCM-CA and CFS), the highest skill and lowest bias was 562

obtained for the CFS model (Fig. 9; Table 4). The CFS was then downscaled to represent 563

local variability in station data, using two different techniques. First, a Canonical Correlation 564
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Analysis (CCA) approach was developed to map GCM seasonal forecasts of seasonal 565

precipitation to seasonal rainfall characteristics (seasonal rainfall amount, daily rainfall 566

frequency, mean daily rainfall intensity on wet days) at each rainfall station. Secondly, a non-567

homogeneous Hidden Markov Model (nHMM) was used to derive ensembles of stochastic 568

daily rainfall sequences at each station as a function of GCM seasonally averaged rainfall; the 569

seasonal rainfall characteristics were then calculated from these simulated daily sequences.  570

For both downscaling methods the skill for seasonal rainfall amount, frequency, and mean 571

daily intensity examined at the station scale (Figs. 10–12) produced similar results. The 572

highest correlations with observations were found for seasonal rainfall amount and rainfall 573

frequency for most measuring stations in the region, but low or negative correlations for 574

rainfall intensity. These differences in skill are consistent with differences in the spatial 575

coherence of station-scale seasonal rainfall anomalies (Table 1), with mean daily rainfall 576

intensity being less spatially coherent and thus less predictable than seasonal amount and 577

daily frequency (Moron et al. 2007).578

Since the objective of the work is oriented towards the development of a drought early 579

warning system for dry-land management, the (retrospective) forecasts of rainfall were then 580

tailored for drought prediction. Following the recommendations of the World Meteorological 581

Organization (Declaration on Drought Indices, December 11, 2009), the Standardized 582

Precipitation Index (SPI), which was calculated from seasonal rainfall amounts, was used as a 583

proxy for meteorological drought. The SPI was forecast with both the CFS-CCA and CFS-584

nHMM approach and compared with observed values, showing that the SPI was quite well 585

forecast by both methods (Fig. 13). 586

For some end-user applications, the seasonal-average SPI may be too coarse, and drought 587
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indices based on daily weather statistics may be more appropriate. Motivated by the potential 588

needs of dry-land management, the nHMM was used to forecast four additional drought 589

indices based on daily rainfall statistics, of which the frequency of occurrence of days 590

exceeding 15 mm/day (FREQ15) and the accumulated daily precipitation deficit (APD) gave 591

highest correlations with observations and positive prediction skill for all stations. While the 592

CCA could also be applied to these statistics, calculating the appropriate predictand from 593

daily observed data, the daily rainfall sequences simulated by the nHMM have the potential to 594

be used in pasture and crop models which require daily weather sequences (e.g. Robertson et 595

al. 2007).  596

Downscaled seasonal predictions of seasonal and daily rainfall characteristics and related 597

meteorological drought indices have been shown feasible for the Coquimbo Region. This 598

could be regarded as an important step in the development of a tailored climate risk 599

management system that should contribute to reduce climate uncertainty in a region that is 600

affected by high rainfall variability. The approach presented in this paper could eventually be 601

extended to forecast agricultural and/or hydrological drought conditions, for which high 602

spatial and temporal resolution of downscaled predictions is required, such as provided by the 603

nHMM approach. The methodology for predicting the nature of within-season daily rainfall 604

variability presented in this paper is also likely to be successful in other regions where daily 605

rainfall variability can be linked to predictable large-scale climatic patterns.606
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Table 1 Degrees of freedom (DOF) and variance of the Standardized Anomaly Index 711

(Var[SAI]) for seasonal rainfall amount (RAm), rainfall intensity (RI) and rainfall frequency 712

(RF) for each province and altitude class in the Coquimbo Region 713

DOF Var[SAI]
N† RAm RI RF RAm RI RF

Province
Elqui 12 9.14 17.26 11.85 0.30 0.20 0.26
Limari 24 4.07 7.13 5.10 0.44 0.31 0.40
Choapa 8 5.14 7.17 6.18 0.41 0.34 0.37

Altitude class 
0–500 m 13 5.05 8.91 6.33 0.40 0.28 0.36
500–1500 m 25 5.10 7.86 6.38 0.40 0.31 0.35
>1500 m 6 13.57 21.01 15.09 0.23 0.16‡ 0.21

† Number of stations used714

‡ Minimum Var[SAI] value (mean correlation equals zero)715
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Table 2 Transition matrix for the 4-state HMM. “From” states occupy the rows, “To” states 716

the columns. Thus, the probability of a transition from state 2 to state 1 is 0.56.717

To State
From State 1 2 3 4
1 0.92 0.05 0.02 0.01
2 0.56 0.22 0.12 0.09
3 0.47 0.25 0.19 0.09
4 0.23 0.28 0.22 0.27

718
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Table 3 Pearson correlation coefficients between the observed station-averaged seasonal719

rainfall amounts (RAm), rainfall frequencies (RF) and rainfall intensities (RI), and the cross-720

validated hindcasts using the average Niño 3.4 index (1937-2006) for different months and 721

multi month periods as a predictor.722

Average Niño 3.4 Index
FMAM March April May MJJA NDJF

RAm 0.26 0.15 0.32 0.44 0.57 0.39
RF 0.33 0.23 0.36 0.49 0.59 0.39
RI -0.29 -0.42 -0.09 0.03 0.20 0.19

723
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Table 4 Pearson correlation coefficient (ρ), mean error (ME) and root mean squared error 724

(RMSE) for cross-validated CCA hindcasts of seasonal rainfall amount with the ECHAM-CA, 725

CFS and CCM-CA models for the period 1981-2000.726

ρ ME RMSE
(-) (mm) (mm)

ECHAM-CA 0.41* -9.74 133.54
CFS 0.69* -8.45 99.92
CCM-CA 0.17* -2.24 137.73

* Correlation is significant at α=0.05 727
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Table 5 Pearson correlation coefficient (ρ), mean error (ME), root mean squared error 728

(RMSE) and hit rate for hindcasts expressed in terms of the station-averaged Standardized 729

Precipitation Index. The hindcasts were made based on the MJJA Niño 3.4 Index, and the 730

CFS downscaled with CCA or the nHMM.731

Niño 3.4
Index CCA nHMM

ρ 0.56 0.65 0.58
ME -0.01 -0.01 0.00
RMSE 0.17 0.17 0.18
Hit Rate† (%) 68.0 56.0 60.0

† Defined as the percentage of correct SPI class prediction732
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List of Figures733

FIG. 1. Number of stations with May–August station rainfall data used in the analysis.734

FIG. 2. Box plots of rainfall seasonality in the Coquimbo Region; a) number of wet days 735

(>1mm) and b) rainfall intensity (mm day-1) on wet days.736

FIG. 3. Average rainfall characteristics during the wet season (May–August): a) seasonal 737

rainfall amount; b) rainfall frequency; and c) mean daily rainfall intensity for the period 1937–738
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FIG. 13. Station-averaged hindcasts of the Standardized Precipitation Index (SPI) obtained 764

from the MJJA Niño 3.4 Index, and the CFS downscaled with CCA and with the nHMM. The 765

SPI values constructed from observed station rainfall are also plotted.766

FIG. 14. Hindcasts of two station-averaged meteorological drought indices (circles) consisting 767
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percentiles of the nHMM ensemble. The Niño 3.4 index is also indicated.771

772



40

FIG. 15. Median Rank Probability Skill Score (RPSS) for hindcasts of a) the number of days 773

with rainfall exceeding 15mm (FREQ15) and b) the Accumulated Precipitation Deficit 774

(APD), constructed from the nHMM simulations.775
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776

FIG. 1. Number of stations with May–August station rainfall data used in the analysis. 777
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778

FIG. 2. Box plots of rainfall seasonality in the Coquimbo Region; a) number of wet days 779

(>1mm) and b) rainfall intensity (mm day-1) on wet days.780
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782

FIG. 3. Average rainfall characteristics during the wet season (May–August): a) seasonal 783

rainfall amount; b) rainfall frequency; and c) mean daily rainfall intensity for the period 1937–784

2006. A locator map indicates the position of the Coquimbo Region within Chile and South 785

America.786
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790

FIG. 4. Spatial correlation function of a) daily rainfall amount, b) rainfall intensity and c) 791

rainfall frequency for the daily, 2-day, 5-day, 10-day, 30 day and seasonal averaging periods. 792

The 1/e decorrelation value is shown as a dashed line.793

794



45

795

FIG. 5. Four-state HMM rainfall parameters. (a)–(d): probabilities of rainfall occurrence and 796

(e)–(h): mean rainfall intensities (i.e. wet-day amounts).797
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799

FIG. 6. The most probable HMM state sequence obtained using the Viterbi algorithm. Rainfall 800

states are indicated from driest (state 1) to wettest (state 4) on the grey color bar.801
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803

FIG. 7. Composites of sea-level pressure anomalies (mb) for each rainfall state. A finer 804

contour interval was used in panel (a) for clarity.805
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806

FIG. 8. Station-average MJJA rainfall amount, colored according to the sign and magnitude of 807

the Niño 3.4 SST index for the period 1937–2005.808
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809

FIG. 9. Cross-validated hindcasts versus observed precipitation amounts using CCA for the 810

three GCMs for the period 1981–2000, where each circle represents the value for each 811

station, for each year. Thus there are 42x20 circles in each panel.812
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814

815

FIG. 10. Pearson correlation between CFS hindcasts downscaled using CCA and observed 816

rainfall for (a) seasonal rainfall amount, (b) rainfall frequency, and (c) mean rainfall intensity, 817

for the period 1981–2005.818
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819

FIG. 11. As Fig. 10, but for CFS downscaled rainfall obtained using the nHMM and taking the 820

ensemble mean over the 150 nHMM simulations.821
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822

FIG. 12. Comparison of station-averaged downscaling results obtained from CFS using CCA 823

and the nHMM. (a) seasonal rainfall amount, (b) rainfall frequency (c), mean rainfall 824

intensity. The error bars indicate the 25th and 75th percentiles of the simulated nHMM 825

ensemble values. The Niño 3.4 index is also indicated.826
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827

828

FIG. 13. Station-averaged hindcasts of the Standardized Precipitation Index (SPI) obtained 829

from the MJJA Niño 3.4 Index, and the CFS downscaled with CCA and with the nHMM. The 830

SPI values constructed from observed station rainfall are also plotted.831
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833

FIG. 14. Hindcasts of two station-averaged meteorological drought indices (circles) consisting 834

of (a) the number of days with rainfall exceeding 15mm (FREQ15), and (b) the Accumulated 835

(daily) Precipitation Deficit (APD), based on the nHMM simulations, compared with values 836

constructed from observed daily rainfall (dashed). The error bars indicate the 25th and 75th837

percentiles of the nHMM ensemble. The Niño 3.4 index is also indicated.838
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839

FIG. 15. Median Rank Probability Skill Score (RPSS) for hindcasts of a) the number of days 840

with rainfall exceeding 15mm (FREQ15) and b) the Accumulated Precipitation Deficit 841

(APD), constructed from the nHMM simulations.842


