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Abstract

The characteristics of sub-seasonal circulation variability over the South Pacific

are examined using 10-day lowpass filtered 700-hPa geopotential height NCEP/NCAR

Reanalysis data. We determine to what extent the variability in each season is

characterized by recurrent geographically-fixed circulation regimes and/or oscillatory

behavior. Two methods of analysis (a K-means cluster analysis and a cross-validated

Gaussian mixture model) both indicate 3–4 geographically-fixed circulation regimes in

austral fall, winter and (to some extent) spring. The spatial regime structures are found to

be quite similar in each season; they resemble the so-called "Pacific-South American"

(PSA) patterns discussed in previous studies and often referred to as PSA 1 and PSA 2.

Oscillatory behavior is investigated using singular spectrum analysis. This identifies a

predominantly stationary wave with a period of about 40 days and a spatial structure

similar to PSA 1; it is most pronounced in winter and spring and exhibits a noticeable

eastward drift as it decays. The power spectrum of variability is otherwise well

approximated by a red spectrum, together with enhanced broader-band 15–30-day

variability.

Our results indicate that low-frequency variability over the South Pacific is not

dominated by a propagating wave whose quadrature phases are PSA 1 and PSA 2, as

hitherto described. Rather, we find that the variability is well described by the occurrence

of 3–4 geographically-fixed circulation regimes, with a (near) 40-day oscillation that is

predominantly stationary in space. The potential sub-seasonal predictability implied by

this duality is discussed. Only during austral spring is a strong correlation found between

El Niño and the frequency-of-occurrence of the circulation regimes.
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1. Introduction

Two distinct approaches have been used to study the "coarse-grain" structure of

atmospheric low-frequency variability (10 < T < 100 d): the episodic or intermittent and

the oscillatory or periodic. Ghil and Robertson (2002) have reviewed studies of the

Northern Hemisphere in these terms.  The intermittency approach describes

geographically-fixed multiple-flow (or weather) regimes, their persistence and

recurrence, and the Markov chain of transitions between them. The periodicity approach

studies intraseasonal oscillations and their predictability. Plaut and Vautard (1994)

described low-frequency variability in the Northern Hemisphere midlatitudes in terms of

oscillatory phenomena as well as in terms of flow regimes defined by the most frequently

occurring patterns. Their results reveal both oscillatory and episodic features. For

example, they found that a Euro-Atlantic blocking regime is strongly favored by,

although not systematically associated with a particular phase of a 30–35-d oscillatory

component. This type of relationship has potentially important practical implications due

to the higher inherent predictability of oscillatory behavior.

The extratropical circulation of the Southern Hemisphere, being much more

zonally-symmetric than that of the Northern Hemisphere, is deceptively simpler. A closer

look hints at a higher complexity since the variance spectrum of empirical orthogonal

functions (EOFs) is flatter and the leading modes are characterized by higher zonal

wavenumbers, thus suggesting a system with a higher number of degrees of freedom (Mo

and Ghil 1987).  The leading EOFs of low frequency variability constructed over the

entire Southern Hemisphere consist of a high-latitude vacillation in the strength of the

polar vortex and Rossby wave trains over the South Pacific (Kidson 1988). Mo and Ghil

(1987) identified a wavetrain-like pattern arching poleward from the subtropical central

Pacific to Argentina, and then refracting equatorward into the Atlantic. Szeredi and

Karoly (1987a,b) identified a similar wave pattern, but with a 90o zonal phase lead.
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These wave-like "modes" have since been referred to as Pacific-South American (PSA)

patterns, numbers 1 and 2 respectively. PSA 1 and 2 are reproduced well by the two

leading EOFs of low-frequency variability over a domain restricted to the South Pacific

extratropics (see Fig. 1, below). The nomenclature is motivated by analogy with the

Pacific-North American pattern in the Northern Hemisphere (e.g., Wallace and Gutzler

1981).

The spatial phase-quadrature relationship between PSA 1 and 2, together with

their near-degeneracy in EOF analyses, suggests a propagating wave. In an analysis of

200-hPa streamfunction, Mo and Higgins (1998) have reported evidence during austral

winter from lag correlations and singular spectrum analysis (SSA) that PSA 1 and 2

represent an eastward propagating wave with a period of about 40 d. They also argued

that forcing over the western tropical Pacific can create a favorable situation for a

particular phase of the PSA modes to strengthen.  Low-frequency variability in the

Southern Hemisphere is also episodic in nature (Mo 1986). Mo and Ghil (1987) studied

quasi-stationary events in the Southern Hemisphere using daily 500-hPa geopotential

maps during 1972–1983 and found two types of geographically-fixed persistent

anomalies, both with a strong zonal wavenumber 3 component and strongly resembling

the two leading EOFs in the data set.

A non-dispersive propagating wave has no preferred phase so that is unclear how

the PSA patterns can simultaneously be described as quadrature phases of a propagating

wave, and geographically fixed circulation regimes. The aim of the present paper is to

explore systematically the episodic/intermittent and oscillatory/periodic characteristics of

the PSA modes, and to extend the work of Mo and co-workers to all four seasons. We

examine the evidence for circulation regimes as well as low-frequency oscillations over

the South Pacific sector from the NCEP/NCAR reanalysis data, and investigate their

seasonal dependence. We apply three analysis methods to the 700 hPa geopotential
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height dataset: a K-means clustering and Gaussian mixture model, as well as multi-

channel SSA (MSSA). We then assess any relationships between the circulation regimes

and oscillatory behavior that could lead to predictability of the former. All three methods

use conventional EOF analysis only as a means of data reduction, thereby circumventing

the potential problem of near-degeneracy of PSA 1 and 2 when defined in terms of the

leading EOFs, which may complicate the physical interpretation of either one.

The paper is organized as follows. In section 2 we describe the data set and pre-

processing steps. Section 3 contains the regime analysis for each of the four conventional

3-month meteorological seasons. In section 4 we use MSSA to isolate oscillatory

behavior, and discuss its relationships with the clusters in section 5. This is followed by

the conclusions in section 6.

2. Data and preprocessing

All analyses in this paper are restricted to the South Pacific sector 150oE–60oW,

20o–90oS. We use daily 700-hPa geopotential heights from the NCEP-NCAR Reanalysis

data set 1948–1999 (Kalnay et al. 1996). The lower-tropospheric geopotential is chosen

so as to emphasize the midlatitude circulation where 700 hPa corresponds to an

approximate “steering level” (Blackmon et al. 1994). Data is very sparse in much of the

domain of study, and a near-surface variable should be more closely controlled by surface

observations which predominate. The reanalysis fields are on a 2.5o latitude-longitude

grid, which was sub-sampled by omitting every other point to yield a 5ox5o resolution.

The values were preprocessed by low-pass filtering (Blackmon and Lau 1980) at 10 days,

followed by construction of the leading EOFs using the covariance matrix, unweighted

by area. There is an error in the reanalysis dataset between 1979 and 1992 due to bogus

Australian surface pressure data, but its impact on low-pass filtered data is expected to be

minimal (Mo and Higgins 1998).
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For the regime analysis (Sect. 3) we determine EOFs separately for the

December–February (summer, DJF), March–May (fall, MAM), June-August (winter,

JJA), and September–November (spring, SON) seasons during the 1948–1999 interval,

which provides the maximum sample size. For the oscillatory analysis (Sect. 4), we

constructed EOFs for the entire calendar year during the period 1958–1999, but (1) with

the mean seasonal cycle subtracted on a daily basis (after the low-pass filtering), and (2)

with the interannual variability suppressed by forming (deseasonalized) anomalies from

annual means.

The two leading EOFs from the latter year-round filtered data are shown in Fig. 1

and compare closely with the PSA patterns constructed by Mo and Higgins (1998) from

500-hPa geopotentials for June–August. They explain comparable fractions of (low-pass

filtered) variance (21.7% and 19.2%), and are well separated from the higher-ranked

EOFs (EOF 3 explains 12.5%). The pairing between the first two empirical modes is less

clear in the individual seasons (in which interannual variability was also retained). When

interannual variability is retained PSA 1 exhibits a zonally-symmetric component over

the pole, especially in summer. The leading 10 EOFs account for more than 85% of the

(low-pass filtered) variance in all analyses.

3. Regime analysis

(i) Number of regimes

To analyze low frequency variability from the episodic point of view, we use

primarily K-means clustering (MacQueen 1967). This is a straightforward and widely

used partitioning method that classifies all days into a predefined set of K clusters, such

as to minimize the spread within them. The number of clusters must be specified, but the

sensitivity of the resulting centroids to the choice of initial seeds and the data sub-sample

can be used as ad-hoc criteria for assessing the validity of the partitioning into distinct
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clusters (Michelangeli et al. 1995). We performed the cluster analysis in the subspace of

the leading 10 EOFs for each season in turn, as described in Appendix A.

To be most conservative, both robustness criteria are applied together. The K-

means method then indicates multiple regimes in fall (K=3 or 5), spring (K=4) and

marginally in winter (K=3); see Table A1. The sensitivity to initial seeds is considerably

higher in summer, suggesting that the regime description is less valid then.

In order to obtain an independent measure of the extent to which the geopotential

height data support the existence of multiple stationary flow regimes, we have also fitted

a Gaussian mixture model to the probability density function (PDF) in the EOF subspace.

This method seeks to fit the PDF with a small number of Gaussian components and

enables a rigorous test for the existence of multimodality, by estimating the cross-

validated likelihood of a single Gaussian versus a that of a mixture of several. The

methodology follows the work of Smyth et al. (1999), and the details are given in

Appendix B.

In fall and winter, the mixture model indicates multimodality with 3–4 Gaussians

(Table B1), supporting the results of the K-means method. Figure 2 shows the data scatter

in the subspace of EOFs 1 and 2 for fall, together with the locations of the three

Gaussians. The positions of the three regime centroids given by the mixture model

(circles) agree closely with those of the cluster analysis (squares). In summer the mixture

model indicates unimodality, which is consistent with the much higher summertime

sensitivity to initial seeds in the K-means analysis. In spring, the K-means analysis selects

K=4 while the mixture model indicates unimodality. We will return to this apparent

contradiction in Sect. 6.

Based on the above results, the regime description of low-frequency variability

over the South Pacific is well justified in fall and winter, somewhat less certain in spring,
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and probably not applicable in summer. For parsimony, in what follows we will consider

the case of K=3 for fall, winter and spring, basing our analysis on the K-means results.

Although the spring values in Table A1 suggest that K=4 is more appropriate, three of the

cluster centroids obtained in spring are almost indistinguishable from those in winter

when K=3 (the pattern correlation between the respective centroids exceeds 0.97), while

the 4th centroid is less robust between the seasons.

 (ii) Spatial structures and regime transitions

Figure 3 shows hemispheric geopotential height anomaly composites for each of

the three clusters for fall, winter and spring. In all three seasons the regimes exhibit PSA-

like patterns, characterized by meridionally elongated tripole Rossby wave patterns

(Berbery et al. 1992). Regimes 1 and 3 resemble opposite polarities of EOF 1 although

they are slightly phase-shifted, while regime 2 resembles EOF 2 (Fig. 1). The cluster

analysis does not, however, simply select each polarity of the EOFs, as is clear from the

off-axis positions of the centroids in Fig. 2 which represent a linear combination of EOF

1 and 2. Thus, EOF 1 can be viewed as the single spatial pattern that maximizes the

variance contained in regimes 1 and 3.

For regime durations beyond a few days, the cumulative frequency distribution of

residence times in each regime follows approximately a geometric distribution (not

shown), similar to the findings of Dole and Gordon (1983) and Kimoto and Ghil (1993)

in the Northern Hemisphere. Thus, the duration of events can be approximated by a first-

order Markov chain. The composites in Fig. 3 are ordered in terms of the their most

frequently occurring transitions, so that the "circuit" 1=>2 =>3=>1 is the preferred

temporal ordering. This progression of spatial patterns suggests an eastward propagation.

Simple counts of the number of times this eastward-propagating circuit occurs, compared

to the opposite westward-propagating one (1=>3=>2=>1) are tabulated in Table 1. In
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each season the eastward-propagating circuit is more frequent than the reverse, but not

dramatically so. The third row of the Table 1 gives the degree of asymmetry (a) in the

transition matrices, where a value of a=2 means that transitions are twice as likely to have

a preferred direction in time, while a=1 denotes equal likelihood of direction. The

tendency toward propagation is strongest in spring with a rough estimate of the period of

30 days given by summing the average regime-durations. This apparent propagation

motivates the analysis in Sect. 4 where we take an oscillatory approach to analyzing low-

frequency variability over the South Pacific sector.

The results in this section were checked a posteriori for any severe long term

trends and large seasonal variation in the frequency of regime occurrence. No large long-

terms trends were found. The largest within-season variations in regime membership

(averaged across the 51 years in the dataset) have a magnitude of about a factor of two,

despite the rather similar regime spatial structures seen in different seasons.

4. Low-frequency oscillations

In this section we examine the oscillatory components of the 700-hPa

geopotential height over the South Pacific, considering the whole calendar year but with

the seasonal cycle subtracted. We begin by computing the year-round sub-annual EOFs

using low-pass filtered data (Fig. 1), as described in section 2. Next, 5-day averages of

unfiltered data, with the mean seasonal cycle subtracted are projected onto these EOFs to

give pseudo principal component time series (referred to simply as the PCs in the

following).  Thus, in effect, we use the leading EOFs of low-frequency variability as

"spatial filters" to focus on the low-frequency structures while retaining the full temporal

spectrum. Finally, singular spectrum analysis (SSA and M-SSA) is applied to these time

series, using the UCLA SSA-MTM Toolkit (Dettinger et al. 1995, Ghil et al. 2002).
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We begin with a univariate analysis, and apply SSA to PCs 1 and 2 (i.e. the time

series of the PSA 1 and 2 patterns plotted in Fig. 1) in turn. For an independent spectral

estimate we also compute the multi-taper method (MTM) spectra. Figure 4 shows the

SSA and MTM spectra for PC 1, with statistical significance estimated against the null-

hypothesis of red noise, using the tests of Allen and Smith (1996) for SSA and Mann and

Lees (1996) for MTM. Both spectra have a long-term “trend” component. This is

probably due to interannual variability associated with ENSO’s influence on PSA 1

(Karoly 1989, Cazes et al. 2002). The MTM spectrum exhibits sub-seasonal peaks at

periods of about 45, 36, 30, 20 and 15 d (all significant at the 95% confidence level). The

SSA spectrum suggests oscillatory pairs of eigenvalues at 45, 31, 19 and 15 d, with the

45d and 31d components being the most statistically significant though at a somewhat

lower level than those identified by MTM. The spectrum of PC 2 (Fig. 5) shows very

pronounced oscillatory components at 48, 22 and 15 d in both spectral estimates. Mo and

Higgins (1998) applied SSA to PSA time series derived from 200-hPa streamfunction and

reported common periods in PSA 1 and PSA 2 of 36–40 d, 22–25 d and 16–18 d.

While the spectral peaks in PCs 1 and 2 have comparable periods, the respective

spectra do not exhibit strongly commensurate peaks that would indicate a propagating

wave, given the approximate spatial quadrature seen in EOF 1 and 2.  Indeed, the

maximum lag correlation between PCs 1 and 2 is only 0.14, and the spectra in Figs. 4 and

5 indicate a red background with rather modest oscillatory components superposed.

To avoid the potential problem of near degeneracy of PCs 1 and 2 and to examine

more closely the spatio-temporal structure of the data, we next apply multi-channel SSA

to the leading 6 PC time series, thereby using the spatial EOF analysis only as a data

reduction tool. To focus on the intraseasonal band, variability with time scales greater

than 65 d was removed at the outset using the SSA "detrending" procedure employed by
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Robertson (1996), applied to each PC time series in turn. Similar results were obtained

using only PCs 1 and 2.

The multichannel analysis identifies the 45–50d component present in both the

univariate analyses of EOF 1 and 2 with a period closer to 42 d, while the behavior

between 20 and 30 d appears to be more broad-band. Figure 6 shows the eigenvalue

spectrum and the power spectra of the leading 8 temporal PCs identified by  multichannel

SSA. The leading two eigenelements form an oscillatory pair with a period of about 42 d.

The next four eigenvalues are clustered together and are associated with a broad-band

peak in the temporal PCs with periods of 20–30 d; these are followed by an oscillatory

18-d pair.

Each eigenelement of the MSSA is associated with an evolving spatio-temporal

structure, such that the sum of all reconstructs the original data set. The reconstructed

contribution of the 42-d pair is illustrated in Fig. 7. The time series of channels 1 and 2

(i.e. PSA 1 and 2) are plotted in Fig. 7a over the 1997–2000 interval. The PSA 1 and 2

components of the wave do appear in phase quadrature, with PSA 2 leading PSA 1,

indicative of eastward phase propagation also hinted at in the regime analysis of Sect. 3

(cf. also EOFs 1 and 2 in Fig. 1). However, the PSA 1 component has considerably

higher amplitude than that of PSA 2.

Figure 7b shows the spatial structure of the oscillation through a composite half-

cycle formed by compositing the reconstruction of the 42-d wave in phase intervals of

1/8th period (i.e. about every 5 days), using the technique of Plaut and Vautard (1994).

Here we have plotted the composites of the wave in the PC 1–2 subspace, so that the

patterns are linear combinations of PSA 1 and 2 plotted in Fig. 1. To aid interpretation of

the longitudinal phase progression with time through the cycle, Fig. 7c shows meridional

averages over the band 50–60oS, together with the longitudes of the maxima of EOFs 1

and 2. The temporal evolution can be interpreted as a very gradual eastward propagation,
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with rapid intensification of amplitude into category 1, where the oscillation resembles

EOF 1 (i.e. PSA 1). This pattern persists while drifting very slowly eastward into

category 2, before decaying rapidly into an EOF-2-like pattern (category 3). Thus, these

phase composites indicate a predominantly stationary oscillation, with the peak amplitude

corresponding to PSA 1 and the minimum amplitude corresponding to PSA 2. The cyclic

evolution of the wave plotted in Figs. 7b and c suggests a highly dispersive wave, with a

eastward group velocity much exceeding the phase speed. When the phase composites

are plotted in the PC 1–6 subspace (in which the MSSA was computed), the peak phase

changes little while the quadrature phase is no longer recognizable as PSA 2.

A slow modulation in the amplitude of the 42-d component is visible in Fig. 7a,

but there is no detectable relationship with ENSO. To determine whether there is any

marked seasonal variation, Fig. 8 shows the variance of the PSA 1 and 2 components of

the 42-d wave for each season. PSA 1 clearly dominates the variance in all seasons, with

largest values in winter-spring and a minimum in summer. Thus, low-frequency

variability during summer appears less coherent, and is neither well characterized by

oscillatory behavior nor regimes.

5. Relationships between regimes and LFOs

The oscillatory components identified in the previous section account for only a

very small fraction of the variance, with the 42-d mode accounting for about 5% of the

sub-annual variance of 5-d means over the South Pacific sector. In this section we

explore whether or not this weak oscillation may nonetheless be related to the occurrence

of the three circulation regimes constructed in Sect. 3. To do this, regime occurrence was

simply counted for each of the eight phase categories of the 42-d oscillation taking the

fall, winter and spring seasons in turn. Confidence limits for by-chance occurrence were

computed by permutating the order of the regime-occurrence time series 100 times.



13

There is a highly statistically significant relationship between the 42-d oscillation

and regimes 1 and 3 during winter and spring, as shown in Fig. 9 for regime 1; the

frequency of occurrence of regime 3 is generally the inverse of regime 1 (Table 2). This

comes about because regimes 1 and 3 resemble opposite polarities of PSA 1, which is

also the spatial pattern that dominates the oscillation (Fig. 7b).  Regime 2 also shows a

significant relationship during several phases of the oscillation, though the changes in its

frequency-of-occurrence are more moderate, consistent with weakness of the quadrature

phase of the oscillation (Fig. 7b,c). There is a general regime progression of 1 ‡ 2 ‡ 3

through the cycle of the 42-d oscillation, which is consistent with Table 1.

The relationship between the 42-d oscillation and the frequency-of-occurrence of

the three regimes suggests that the latter may contain some predictability. To explore this

further, we compute the probability of regime occurrence conditional on the lagged phase

category of the oscillation, following Plaut and Vautard (1994). Thus, assuming that the

phase category of the oscillation is known at some initial time, we aim to predict the

regime occurrence at later times. Figure 10 shows the probability of regime 1 occurring

during winter at lead times up to 50 days, conditional on phase category of the 42-d

oscillation at the initial time. The results are shown for initial phase categories 1–4, with

similar results obtained for the second half cycle. The conditional probabilities clearly

exceed chance up to 30 days into the future. Similar results are found for regime 3, as

well as for spring and fall. Regime 2 is found to be less predictable. Similar results are

found with K = 2 regimes specified, in which case we recover EOF 1 (i.e. PSA 1).

The apparent predictability seen in Fig. 10 cannot, however, be interpreted as

hindcast skill because the probabilities have been computed from the same data used to

determine the regimes and the oscillation.
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6. Discussion and conclusions

We have analyzed low frequency variability in the NCEP/NCAR Reanalysis data

of lower troposphere (700 hPa) geopotential height field over the South Pacific sector in

terms of geographically-fixed circulation regimes and oscillatory behavior. The regimes

were identified using  a K-means cluster analysis and a cross-validated Gaussian mixture

model, while a multi-channel singular spectrum analysis (MSSA) was used to the search

for oscillatory components.

The spatial structures identified in both types of analysis are similar to the Pacific-

South American (PSA) wavetrains identified in previous studies. The two leading (T > 10

d) EOFs are usually referred to as PSA 1 and PSA 2 (Fig. 1). In relaxing the

orthogonality constraints inherent in EOF analysis, our results confirm the physical

relevance of EOF 1, since a similar pattern dominates our oscillatory analysis in terms of

amplitude (Fig. 7b,c). Our analysis of circulation regimes (Fig. 3) also indicates that the

leading two EOFs give reasonable approximations of spatial structure, although the

regimes are linear combinations of them (Fig. 2).

Both methods of regime analysis show that low-frequency variability over the

South Pacific sector is well described by three or four recurrent geographically-fixed

circulation regimes in austral fall (MAM) and winter (JJA), and to some extent in spring.

Both methods suggest that the regime description is less valid in summer. The spatial

structures of the regimes (Fig. 3) are found to be very similar in fall, winter and spring,

consisting of zonal wave trains across the South Pacific. These patterns are confined to

midlatitudes and differ form the PSA wavetrains detected by Mo and Higgins (1998) in

200-hPa streamfunction that extend into the tropics. In further contrast to the latter study,

we found no statistically significant relationships with tropical OLR, and thus conclude

that the regimes identified here are intrinsic to the midlatitudes, similar to the
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interpretation of Lau et al. (1994). On the other hand, the frequency-of-occurrence of

regime 3 is highly correlated with ENSO during austral spring (r=0.60 with the Niño 3.4

index). This is consistent with the study of Cazes et al. (2002) which proposed that

interannual ENSO teleconnections over southeastern South America could be interpreted

in terms of the changes in the frequency of occurrence of intraseasonal circulation

regimes during October–December.

The spectral analysis of PSA 1 and 2 reveals a predominantly red spectrum, which

is consistent with episodic regime-like behavior where regime durations follow

approximately a geometric distribution without a preferred duration. However, there is

evidence of significant oscillatory peaks in the 40–50-d, and 20–30-d bands. The spectral

peaks in PSA 1 and 2 do not match closely, suggesting no simple propagating wave. A

multichannel analysis in the sub-seasonal range identifies a dominant peak at 42.5 d,

which is slightly longer period than the 36–40 d peak found by Mo and Higgins (1998) in

200-hPa streamfunction. Phase composites of this component show that it is dominated

by the PSA 1 spatial pattern, and is almost stationary in phase. A gradual eastward drift

of this pattern accompanies its rapid attenuation, so that the quadrature phase is very

weak in amplitude. The oscillation is present throughout the year but is most pronounced

in austral winter and spring. No ENSO modulation was found.

Previous studies (e.g. Mo and Higgins 1998) have interpreted low-frequency

variability over the South Pacific in terms of a propagating wave with a period of about

35–40 days, with an eastward progression characterized by the PSA 1 and PSA 2

patterns. Such a description would not be compatible with the geographically-fixed

circulation regimes. Our analysis does find strong evidence for the latter in fall and

winter. We also find evidence of an oscillatory component with a period of about 42

days. These two findings are consistent because the oscillation is found to be a

predominantly stationary in space. Thus, we find that both the episodic and the
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oscillatory viewpoints are consistent with each other, with the regimes characterizing the

slow part of the cycle.

While we have stressed the geographically fixed nature of the PSA patterns, we

do find some evidence of eastward propagation in austral spring. This is brought out by

the transitions between the three regimes identified in the K-means analysis (Table 1). It

is also hinted at by the increased robustness of the K=4 description in which the four

regimes have spatial structures that are close to the PSA 1 and 2. The Gaussian mixture

model indicates unimodality in spring, arguing against the regime description during

spring. It is beyond the scope of this paper to stratify the oscillatory analysis by season,

but it would be of interest to know if the 42-d wave has a stronger propagating

component during austral spring.

The 42-day wave is weak only explaining about 5% of low-frequency variance so

that it’s relevance is questionable. We investigated whether or not a weak oscillatory

component could nonetheless influence regime transitions. According to Fig. 9 there is

quite a strong (and highly statistically significant) relationship between the phase of the

42-d wave and regime occurrence during winter and spring. The frequency of occurrence

of regime 1 (similar to PSA 1) changes by a factor of three between the extreme phases

of the oscillation, suggesting that the oscillatory component is stronger than its variance

indicates. One explanation for this apparent discrepancy would be that the oscillation is

somewhat broader band than indicated by the MSSA.  The finding that low-frequency

variability over the South Pacific is characterized by both (a) geographically-fixed PSA-

like circulation regimes, and (b) by oscillatory components has implications for potential

predictability. We find that bias in the frequency-of-occurrence of each regime may be

strong enough for the oscillation to be used as a predictor of the probability of regime

occurrence, up to 30 days in advance in certain cases (Fig. 10), although further work is

required to determine whether there is any useful skill using cross-validation. The
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predictive nature of the oscillatory component found here is similar in extent to that

reported for the North Atlantic-European sector by Plaut and Vautard (1994).
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Appendix A: Cluster analysis

The K-means method is applied in the subspace of the leading 10 PCs following

Michelangeli et al. (1995).  An initial 10% random subset of days is used to determine the

initial seeds, and the algorithm proceeds iteratively from the initial seeds, modifying the

cluster centroids (i.e. the means) at each iteration. The clustering is then repeated 50

times to eliminate any sensitivity to initial seeds. The reference partition is defined from

this set of 50 analyses to be the one whose cluster centroids are most similar to the

remaining 49, in terms of pattern correlation. The sensitivity to the choice of initial seeds

gives a measure of how classifiable the data set is for a particular pre-specified number of

clusters K. The similarity between two partitions Pi and Pj can be quantified by the

smallest pattern correlation between a centroid in Pi with its best analogue in Pj . A

classifiability index (CI) can then be defined as the average of this similarity-value over
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all pairs of partitions (Michelangeli et al. 1995). The CI is unity for a perfect match and

zero for uncorrelated patterns.

The number of clusters K should also maximize the reproducibility of the patterns

obtained from subsets of the data (Cheng and Wallace 1993).  To quantify

reproducibility, random subsets containing 50% of the days in the dataset are drawn 100

times. Splitting a data set into two equal halves is a common device for assessing

robustness. The reference partition is computed for each 50%-subset, and its similarity

with that of the full dataset calculated; averaging these similarity values from all 100

subsets defines a reproducibility index (R) for each value of K. Cheng and Wallace

(1993) argue, on the basis of experience, that two hemispheric patterns bear a strong

resemblance to each other if their pattern correlation is near or above 0.89. They increase

this threshold for a sector of the hemisphere to account for the reduced number of spatial

degrees of freedom, so as to retain a similar value of the Student t-statistic. For the 150o

South Pacific sector considered here, the corresponding threshold would be 0.94.

Table A1 shows the classifiability and reproducibility indices (in percent) as a

function of K for each 3-month season. Values of K=3–4 in Table A1 generally yield the

best CI and R scores, although the highest values of these indices do not always clearly

point to a particular value of K. The case of K=2 yields almost exactly EOF 1 in all

seasons so that the K-means method does not yield any additional information to classical

EOF analysis (Michelangeli et al. 1995).

Appendix B: The Gaussian mixture model

The method of cross-validated maximum likelihood is used to determine the

number of component Gaussian distributions that provide the best fit to the data. The

cross-validation here consists of randomly selecting 25 seasons, training the model on

these seasons, and then validating on the remaining 25. The procedure is repeated 20
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times. This method provides a rigorous test of any multimodality in the PDF, against the

null-hypothesis of a single unimodal Gaussian.

The mixture model was applied to the same seasonally-stratified data sets used for

the K-means analysis, restricting the data to the subspace of the leading two PCs. The

results are shown in Table B1 as a function of the number of Gaussian components, k.

The cross-validated log-likelihoods are relative measures of likelihood, with the

maximum (i.e. smallest negative) value being the most likely. The estimated (posterior)

probabilities of each value of k, given the dataset (i.e. P(k|D)), are also tabulated (see

Smyth et al. 1999). The high posterior probability of k=3 in fall is consistent with the

cluster analysis in which there is a unique coincidence of both CI and R values greater

than 0.98 (Table A1) with three clusters during the fall.
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Figure Captions

Figure 1: Leading two EOFs of 10-d low-pass filtered 700 hPa geopotential heights

1958–99, computed over the South Pacific sector with the mean seasonal cycle

subtracted. Shown are hemispheric maps of regression coefficients with the

respective principal component time series (PC). Amplitudes correspond to a one

standard deviation of the PC, with each PC’s variance given (in percent). Contour

interval: 10 gpm.

Figure 2: Scatter of daily geopotential heights (March–May) projected onto the PC-1/PC-

2 plane, with every 5th point plotted. The solid squares denote the positions of the

three K-means. The results of the Gaussian mixture model are plotted in terms of

its centroids (solid circles) and covariance ellipses.

Figure 3: Regime composites of 700-hPa geopotential height obtained from the K-means

analysis of the South Pacific sector for each season 1948–99. Contour interval: 10

gpm. Negative anomalies are shaded.

Figure 4: Spectral analysis of pseudo-PC 1. (a) SSA spectrum computed with M=40 5-d

means. The error bars give the 95% confidence interval of a red-noise process

fitted to the time series. (b) MTM spectrum computed with 39 tapers. The

background curves denote the 50, 95 & 99% thresholds of a red-noise null-

hypothesis. Periodicities of interest are given above each spectrum (in days). The

SSA used a window of M=40 5-d means (an approximate spectral resolution of

0.0040 cy d-1).  For MTM, 39 tapers were used yielding a half-bandwidth spectral

resolution of 0.0013 cy d-1.

Figure 5: Spectral analysis of pseudo-PC 2. Details as in Fig. 4.
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Figure 6: Multichannel SSA of detrended pseudo-PCs 1–6, using M=20. (a) Eigenvalue

rank spectrum, in percent of total variance. (b) MEM spectra (5 poles) of the

leading 8 temporal PCs resulting from the MSSA. The approximate periods are

given above the curves. The MSSA was applied using the full covariance matrix

(Plaut and Vautard 1994).

Figure 7: The sum of MSSA reconstructed components (RCs) 1 and 2. (a) Channel 1

(solid curve) and channel 2 (dotted curve) plotted over the 3-year interval

1997–1999. (b) Phase composites over the phase intervals (1) 0–p/4, (2) p/4–p/2,

(3) p/2–3p/4, and (8) 7p/4–2p, with negative anomalies shaded. (c) Meridional

averages 50–60oS of the maps in panel b. Also shown (arrows) are the longitudes

of the maxima of EOFs 1 and 2 (Fig. 1). The units are arbitrary. Panels b and c

show the projection of the oscillation in the 2-D subspace of PCs 1 and 2 (Fig. 1).

Figure 8: The seasonal variation of the amplitude of the 42-d wave reconstructed

components (RCs 1–2), in terms of the variance of channels (PCs) 1 (grey) and 2

(black).

Figure 9: Occurrence frequency of regime 1 for each phase category of the 42-d wave

reconstructed components (RCs 1–2). The error bars show the 95% range of

random sampling.

Figure 10: Conditional probability of occurrence of regime 1 during June–August, taking

the phase category of the 42-d wave reconstructed components (RCs 1–2) as a

predictor, as a function of lead time. Error bars give the 95% range of random

sampling.



26

Table Captions

Table 1: Number of transitions that belongs to each temporal "circuit", and the average

asymmetry in the transition matrix, defined by the arithmetic average of the ratios

of the off-diagonal elements.

Table 2: The number of days that fall simultaneously into the three clusters (columns)

and eight 42-d oscillation p/4 phase categories (rows). The clusters were

determined separately for each season. Values smaller than the 2.5 %-ile of

random sampling are given in italics, with those that exceed the 97.5 %-ile in bold

face.

Table A1: Classifiability (CI) and reproducibility (R) indices for the K-means analysis as

a function of K for each season, both in percent. The reproducibility is given as a

range over all the K centroids in the partition. Values of 94% or above are

significant, according to an ad-hoc threshold.

Table B1: Cross-validated log-likelihood (top) and estimated posterior probability

(bottom) of the Gaussian mixture model as a function of k. The most likely values

are highlighted in bold.
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Table 1:

MAM JJA SON

WfiE

1=>2=>3=>1

275 266 315

EfiW

1=>3=>2=>1

218 184 185

Transition matrix

asymmetry, (a)

1.29 1.45 1.70
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Table 2:

MAM JJA SON

1 2 3 1 2 3 1 2 3

1 135 126 169 115 115 225 81 149 180

2 168 130 132 134 105 156 116 114 190

3 183 153 104 201 112 137 213 82 140

4 223 155 67 273 96 86 301 64 85

5 183 177 80 276 100 59 273 95 82

6 162 172 96 247 112 86 257 124 84

7 163 155 117 148 166 111 114 145 136

8 111 121 203 92 162 171 87 119 224
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Table A1

Summer

(DJF)

Fall

(MAM)

Winter

(JJA)

Spring

(SON)

K CI R CI R CI R CI R

3 82 94–99 98 98–99 92 95–97 81 91–95

4 80 97–99 80 88–95 90 98–99 96 98–99

5 80 98–99 97 97–99 82 91–98 93 93–99

6 75 88–98 66 88–98 84 81–99 75 82–97

7 70 95–97 63 80–92 84 90–99 71 88–97

8 64 87–93 65 78–92 68 82–94 76 67–96
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Table B1:

k=1 k=2 k=3 k=4 k=5 k=6

Summer

(DJF)

-1395.327

0.983

-1395.490

0.017

-1395.704

0.000

-1395.911

0.000

-1396.365

0.000

-1396.389

0.000

Fall

(MAM)

-1457.226

0.000

-1456.876

0.040

-1456.749

0.951

-1456.933

0.010

-1457.155

0.000

-1457.273

0.000

Winter

(JJA)

-1485.122

0.000

-1484.708

0.000

-1484.225

0.293

-1484.192

0.662

-1484.464

0.001

-1484.300

0.045

Spring

(SON)

-1443.410

0.999

-1443.698

0.001

-1443.779

0.000

-1443.913

0.000

-1444.147

0.000

-1444.330

0.000
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