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Abstract

This study examines the spatial coherence characteristics of daily station observations of rainfall 

in 5 tropical regions during the principal rainfall season(s): the Brazilian Nordeste, Senegal, 

Kenya, Northwestern India and Northern Queensland. The rainfall networks include between 9 

and 81 stations, and 29-70 seasons of observations. Seasonal-mean rainfall totals are decomposed 

in terms of daily rainfall frequency (i.e the number of wet days) and mean intensity (i.e. the mean 

rainfall amount on wet days). 

Despite the diverse spatio-temporal sampling, orography and land-cover between regions, three 

general results emerge. (1) Interannual anomalies of rainfall frequency is usually the most 

spatially coherent variable, generally followed closely by the seasonal amount, with the daily 

mean intensity in distant third place. In some cases, such as Northwestern India which is 

characterized by large daily rainfall amounts, the frequency of occurrence is much more coherent 

than the seasonal amount. (2) On daily time scales, the inter-station correlations between amounts 

on wet days always fall to insignificant values beyond a distance of about 100 km. The spatial 

scale of daily rainfall occurrence is larger and is more variable amongst the networks. (3) The 

regional-scale signal of the seasonal amount is primarily related to a systematic spatially-coherent 

modulation of the frequency of occurrence. 
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1. Introduction

Tropical rainfall is mainly convective, with rainfall events characterized by short durations, high 

rain rates and small spatial scales (e.g. Houze and Cheng, 1977; Leary and Houze, 1979; Chen et 

al., 1996; Rickenbach and Rutledge, 1998). The spatial correlation length, that is the approximate 

distance at which the correlation between a grid-point and the neighboring ones becomes lower 

than 1/e ~ 0.37, of tropical deep convection at 3-hourly time scale has been estimated from 

satellite infra-red radiance data to be 95-155 km over the continents (Ricciardulli and 

Sardeshmukh, 2002). Smith et al. (2005) found similar length-scales for tropical rainfall from 

Tropical Rainfall Measuring Mission (TRMM) data, with large variations between regions (their 

Fig. 6 for example). A rainy season is comprised of a large number of individual rainfall events 

and this summation smoothes the rainfall field to a certain extent (e.g. Bacchi and Kottegoda, 

1995; Abdou et al., 2003). At the annual time scale, Dai et al. (1997) estimated that the spatial 

correlation of rainfall amounts falls to an insignificant level beyond a separation distance of about 

200 km for the northern Tropics and about 550 km for the southern Tropics. New et al. (2000) 

found similar estimates using monthly rainfall. 

Current seasonal prediction schemes concentrate on larger spatio-temporal scales by issuing 

three-month average predictions of rainfall amounts across homogeneous areas or at GCM grid-

points (e.g. Goddard et al., 2001; Gong et al., 2003). However, potential users of seasonal 

predictions of tropical rainfall often need estimates at smaller spatio-temporal scale, such as onset 

date and length of the rainy season, or the amplitude and frequency of dry or wet spells at local 

scale (e.g. Ingram et al., 2002; Baron et al., 2005; Hansen et al., 2006). These characteristics 

depend ultimately on the occurrence of rainfall and the distribution of rainfall amounts on wet 

days (e.g. Stern and Coe, 1984; Wilks, 1999). The extent to which the frequency of occurrence, 

and the shape and scale of the probability density function of rainfall at local scale are potentially 

predictable remains to be estimated. 
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An upper bound of the potential predictability may be inferred from the spatial coherence of 

regional-scale anomalies based on the hypothesis that any large-scale climate forcing, such as that 

provided by sea surface temperature (SST) anomalies, would, to first order, tend to give rise to a 

rather spatially-uniform signal in precipitation (Haylock and McBride, 2001), in the absence of 

strong lower-boundary gradients such as orography. In a recent study of daily rainfall on a 

network of 13 stations over Senegal during the West African monsoon season, Moron et al.

(2006, hereafter MRW06) found seasonal anomalies of the frequency of occurrence of daily 

rainfall (i.e. the number of wet days) to be much more spatially coherent between the 13 stations, 

than seasonal anomalies in the average rainfall amount on wet days, i.e. the mean rainfall 

intensity. Consistent with this result, MRW06 used a set of atmospheric general circulation model 

(GCM) simulations made with prescribed historical SSTs, to demonstrate much higher skill in the 

GCM’s simulation of seasonal rainfall frequency than mean intensity over the region of Senegal. 

Many factors impact the spatio-temporal properties of rainfall, and their relative importance 

depends strongly on the scales analyzed. Tropical weather phenomena have been decomposed 

into at least four hierarchical spatial scales: the cumulus scale (~ 1-10 km), meso-scale (~ 10-300 

km), cloud-cluster scale (~ 300-1000 km), and synoptic scale (~ 1000 km) (Houze and Chen, 

1977), in addition to the tropical convergence zones at the planetary scale. The spatial extent of 

an individual rainfall event is ultimately related to the processes that generate rainfall, but is much 

smaller than the regional scale analyzed here. Very high rain rates are associated with small-scale 

individual convective cells (i.e. cumulus scale) embedded within meso-scale convective 

complexes (MCCs) and cloud clusters (e.g. Leary and Houze, 1979; Chen et al., 1996; 

Rickenbach and Rutledge, 1998). The MCCs and cloud clusters contain both regions of 

convective cells and stratiform rain, more extended in space and lengthier in time (e.g. Lopez, 

1978; Leary and Houze, 1979; Rickenbach and Rutledge, 1998). The MCCs and cloud clusters 
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are usually propagating features, so that there is a mismatch between the Lagrangian frame in 

which it is most natural to view them, and the fixed-in-space Eulerian frame of the irregular and 

widely-spaced networks of raingauges. The MCCs and cloud clusters themselves could be in turn 

be embedded within larger-scale convergence zones such as synoptic-scale lows and depressions, 

the most spectacular ones being tropical cyclones, and ultimately within the planetary-scale inter-

tropical convergence zone. These aspects are illustrated schematically in Fig. 1. 

Clearly, a large amount of statistical sampling variability is inevitable, and the daily, monthly and 

seasonal integration is crucial to isolate the impact of larger-scale organization and its potentially-

predictable slow temporal modulation on station-scale daily rainfall characteristics. Considering 

daily rainfall occurrence, rather than daily totals, can be expected to filter out small-scale details 

of amount-variability associated with individual convective cells, thus tending to emphasize 

larger-scale organization. In the long-term climatological mean, differences between the stations 

are mostly related to fixed factors including geographical location, orography etc. Beyond these 

long-term differences, the “fast” variations (i.e. < season), primarily associated with regional and 

local-scale atmospheric internal variability, and the “slow” variations (i.e. > season), more related 

to SST and soil-moisture anomalies, contribute differently to the spatial coherence of rainfall on 

different time scales.

The purpose of this paper is to determine the generality of the spatial-coherence findings of 

MRW06 by considering four additional tropical regions, and to include analysis of daily as well 

as seasonal-scale rainfall coherence, bridging the gap between largely intermittent and chaotic 

daily rainfall fields (from a seasonal perspective) and spatially coherent and partly potentially 

predictable seasonal ones. The regions are NE Brazil (hereafter referred as the Nordeste), Kenya, 

Northwestern India, and Northern Queensland in Australia, where in each case we consider the 

principal monsoon season (two in the case of Kenya). These regions are considered to be fairly 
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spatially homogenous at least as far as the interannual variability of seasonal rainfall amounts is 

concerned (Camberlin and Diop, 1999 for Senegal; Parthasarathy et al., 1993, 1994 for 

Northwestern India; Ogallo, 1989 and Indeje et al., 2000 for Kenya; Moron et al., 1995 for 

Nordeste; Lough, 1993, 1996 for Queensland). While Senegal is rather flat, the other regions are 

more heterogeneous as a result of contrasting orography, especially in Kenya. The five regions 

(including Senegal) span a range of monsoon climates affected by various meso to synoptic-scale 

meteorological features, such as squall lines in Senegal (e.g. Laurent et al., 1998; Mathon and 

Laurent, 2001) and tropical depressions in India (e.g. Mooley, 1973; Mittra et al., 1997), allowing 

us to determine how generalizable the specific results obtained over Senegal (MRW06) are in 

different tropical settings. 

The paper proceeds as follows. Section 2 describes the data used. The analyses of spatial 

coherence of the interannual variability of seasonal seasonal amount, frequency of occurrence and 

mean intensity of rainfall during wet days in the observed station datasets are reported in section 

3. The spatial scales of daily and seasonal rainfall are analyzed in section 4, with the summary 

and discussion in section 5.

2. Daily rainfall data

A summary of the 5 data networks is provided in Table 1. The networks range in area between 

~120 000 (Nordeste) and 450 000 (Northwestern India) km2 (Fig. 2). The analysis is restricted in 

each case to the rainy season excluding the dryer months on either side where the spatial 

coherence would be artificially inflated, at least at daily and short time scales.  

a. Senegal

The West African monsoon season, peaking in August over Senegal, is associated with the 

northernmost migration of the African inter-tropical convergence zone (ITCZ). As for the entire 
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Sahelian belt, rainfall is mostly associated with westward moving meso-scale squall-lines (e.g. Le 

Barbé and Lebel, 1997; Laurent et al., 1998; Mathon and Laurent, 2001). The 13 stations used in 

MRW06, provided by the “Direction de la Météorologie Nationale” are used here. We use daily 

rainfall amounts during the 92-day season, July 1 – September 30, for the 38-year period 1961-

1998. Senegal is a flat country and the main heterogeneity is associated with land cover. The rain 

gauges are spaced fairly regularly over the country (Fig. 2a). This dataset contains no missing 

data though some data are doubtful. There are three non-synoptic stations, such as Diouloulou in 

SW Senegal that record far fewer small rainfall amounts (< 1 mm) than neighboring synoptic 

stations, such as Ziguinchor. There are also several unexplained very long continuous dry spells 

(e.g. August-September in 1996 in Kolda). 

b. Northern Queensland

The summer monsoon season over Northern Queensland is centered on January and corresponds 

to the southernmost location of the ITCZ over the Australian continent (Lough, 1993). Rainfall is 

produced by various phenomena including synoptic-scale lows and depressions (e.g. Hopkins and 

Holland, 1997). We use daily rainfall amounts at 11 stations during the 121-day season, 

December 1 – March 31, for the 40-year period 1958-1998. These data were obtained from the 

Patched Point Datatset (PPD) (Jeffrey et al. 2001), and used previously in the study of Robertson 

et al. (2006). The PPD combines observed Australian Bureau of Meteorology (BoM) daily 

rainfall records with high quality and rigorously tested data infilling and deaccumulation of 

missing or accumulated rainfall. Four of the 11 stations have more than 10% of missing days 

infilled: station 2 (18.0%), station 4 (41.6%), station 8 (20.9%), and station 9 (10.3%). Of these, 

station 8 might be viewed with some caution, since it has considerable infilling and is situated in 

a region of orography. The rain gauges are not homogenously distributed, with 6 along or near the 

coast, and 5 stations in the interior (Fig. 2b). A small mountain range along the coast enhances 
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rainfall in the coastal stations (> 1300 mm and 60 wet days) while the interior is drier and the 

westernmost stations receive less than 400 mm of rain over 22-31 wet days. 

c. Northwestern India

We use daily rainfall amounts at 28 stations over the state of Northwestern India largely within 

the states of Rajasthan and Gujarat for the 122-day summer monsoon season, June 1–September 

30, for the 71-year period 1900-1970. The chosen network is located over the northwestern part 

of the so-called “homogeneous monsoon zone”, or continental tropical convergence zone (e.g. 

Sikka and Gadgil, 1980; Webster et al., 1998; Gadgil, 2003). This area is affected by synoptic-

scale lows and tropical depressions which form over the northern Bay of Bengal and move 

westward across India (e.g. Mooley, 1973; Mitra et al., 1997; Goswami et al., 2003). These data 

were taken from the Global Daily Climatology Network (GDCN), archived at the National 

Climatological Data Center (NCDC). The stations are fairly regularly spaced (Fig. 2c) and the 

terrain is rather flat. There are nominally 0.07% of missing daily values . Seasonal rainfall totals 

range from 200 mm in the north to 1200 mm in the southeast (not shown). The number of wet day 

(receiving more than 0 mm of rainfall) varies accordingly from 10-20 days at the driest stations, 

to 40-65 days at the wettest ones. 

d. The Nordeste

We use daily rainfall amounts recorded at 81 stations over Ceara state, that is the northernmost 

part of Brazilian Nordeste, for the 89-day (90-day for leap years) February 1 – April 29 (FMA) 

rainfall season, over the 29-year period 1974-2002. This region receives its highest rainfall in 

March-April when the ITCZ is at its most southerly position (Ratisbona, 1976; Hastenrath and 

Heller, 1977). Rainfall is produced by various phenomena, such as slow westward-propagating 

depressions (Ramos, 1975), and northward-moving cold fronts which enhance convective activity 

across Nordeste (Kousky, 1979, 1985). This data comes from a larger dataset of 700 stations 
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provided by FUNCEME (Fundacao Cearesense de Meteorologia). The 81 stations having more 

than 90% of daily values present are retained in this study. There are 4.49% of missing days. This 

is the densest network (Fig. 2d and Table 1) analyzed. The orography in this area is relatively 

smooth with highest peaks below 600 m. Seasonal rainfall totals range from less than 350 mm in 

the extreme southwest to more than 1000 mm in the northwest. The driest area, on a SW-NE 

diagonal, receives less than 500 mm during FMA. The number of wet days receiving more than 0 

mm of rainfall is typically between 23 and 35, and reaches 50 at the wettest locations (not 

shown). 

e. Kenya

We use daily rainfall amounts at 9 stations (Fig. 2e) for the 92-day March 1 – May 31 and 

October 1 – December 31 rainfall seasons, over the 39-year period 1960-1998. There are two

rainy seasons associated with the passage of the ITCZ over the country (Ogallo, 1985; Nicholson, 

1996).  However, the ITCZ is very diffuse in the region. Partly due to the complex topography, 

organized weather systems are not common, and local convection, combined with orographical 

effects, plays a major role in the space-time distribution of rainfall (Ogallo, 1985; Nicholson, 

1996). The dataset was assembled from two sets provided by the Kenyan Meteorological 

Department. The daily data were checked for errors against “monthly weather summaries” since 

spurious, extremely high daily amounts are found for Lodwar, Narok and Moyale (with more than 

10 times the monthly mean). These errors, were found to correspond to a multiplication by a 

factor of 10 or 100, and were corrected to match the monthly amounts. A few missing values 

remain (respectively 1.7% and 2.8% of missing values in MAM and OND) but are concentrated 

during a few years and stations. Kenya is mountainous and this network is, by far, the least 

homogeneous of those analyzed in this study. Given the complex orography, this network (Fig. 

2e) is certainly unable to sample the whole range of variability, but the Kenyan case is 

particularly interesting since it enables to compare two contrasted rainy seasons in a given region.
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During the MAM “long rains”, rainfall is low in the northwest (< 100 mm in Lodwar) and varies 

between 280 and 560 mm elsewhere, reaching a maximum in the southwest and along the Indian 

Ocean coast. The occurrence frequency of wet days is 12 in Lodwar and 31-55 elsewhere. During 

the OND “short rains”, rainfall amounts are lower but less variable, between 140 mm in Narok 

and 300 mm in Kisumu (except < 50 mm for Lodwar) and the number of wet days is between 6 

(Lodwar) and 40 (Kisumu) as typically between 20 and 30. 

f. Treatment of missing values

Missing entries over the Nordeste, Kenya, Northwestern India were filled using a simple 

stochastic generator applied independently to each station (Wilks, 1999) before the following 

analyses. If a whole month is missing, this method creates a daily time series where the amplitude 

of daily amount as well as the persistence of dry and wet days are consistent with the long-term 

mean. This simple scheme will underestimate any spatial coherence at the daily time scale, but 

the small fraction of missing data (at most 4.5% for the networks where the missing entries are 

not filled a priori) limits this bias. Moreover, the missing values tend to be scattered randomly in 

time and thus their impact on seasonal quantities is small.

3. Estimates of spatial coherence 

a. Degrees of freedom and relationships between seasonal amount, frequency of occurrence and 

mean intensity

In their study of the Senegal network, MRW06 proposed that, while interannual variability of 

seasonal amount (S) at each station is accounted for rather equally by year-to-year changes in the 

frequency of occurrence (O) and mean intensity (I) (see Fig. 2 of MRW06), the predictable 

component of the interannual variability of S is largely restricted to O, with I being essentially 

unpredictable. Here O is simply estimated as the relative frequency of daily rainfall > 1 mm, and 
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I=S/O is the mean rainfall amount on wet days. Sensitivity to the wet-day threshold is 

investigated in Sect. 3c.

We now explore this hypothesis across the 6 seasonal networks at interannual scale. First, the 

component of interannual variability of S that is linearly related to that of O is extracted using 

linear regression, computed independently at each station; 

(1) βα += OSocc

We then compute the correlation between the residuals of the regression ( SSocc− ) and the 

interannual variability of I at each station. The network average of the squared correlation (i.e. the 

common variance) is shown for each region in Table 2, together with an estimate of the number 

of spatial degrees of freedom (DOF) for each variable. The DOF (Der Mégrédichtian, 1979; 

Moron, 1994; Fraedrich et al., 1995; Bretherton et al., 1999; MRW06) gives an empirical 

estimate of the spatial coherence in terms of empirical orthogonal functions (EOFs), with higher 

values denoting lower spatial coherence. Further details are given in the appendix. 

As in the case of Senegal in MRW06, the correlations between S and O on one hand and between 

S and I on the other hand are both positive and usually high. In consequence, the network 

averages of the common variance between S and I are usually comparable to those between S and 

O across all the networks. In contrast, the common variance between O and I is usually close to 

zero, except for Kenya in MAM (Table 2) and the DOF of I and SSocc− are also consistently 

much larger than the DOF of O, again supporting the hypothesis of MRW06 that the spatially 

coherent part of the interannual variability of S is mainly derived from that of O. 

The DOF of interannual variability of S, O and I over Kenya are plotted as a function of the 

number (M) of stations considered in Fig. 3, with the two seasons (MAM and OND) considered 
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separately. Every combination of M stations is considered, with M varying from 2 to 9. Similar 

computations have been made for every network (not shown). Again the results support those 

reported by MWR06 for Senegal: spatial coherence at interannual scale is moderate-to-strong for 

the seasonal amount (Fig. 3a) and rainfall occurrence (Fig. 3b), but weak for the mean intensity of 

rainfall (Fig. 3c). Over Kenya, the spatial coherence is stronger during OND than MAM, which is 

consistent with the well-known larger potential predictability during OND (e.g. Rowell et al., 

1994; Camberlin and Philippon, 2002; Philippon et al., 2003). 

b. Robustness to methodological considerations 

The comparison between the DOF estimates of different networks is not bias free, particularly 

when the spatial coherence is low (that is when DOF is high). This bias is related to the fact that 

DOF is bounded by the rank of the correlation matrix, which is its smallest dimension (see 

appendix). An alternative measure of the spatial coherence of interannual anomalies is provided 

the inteannual variance of station-averaged (standardized) anomalies – the standardized anomaly 

index (SAI, see appendix)

The DOF and var[SAI] estimates of the interannual variability of  S, O and I are plotted for each 

network in Fig. 4. There is a near-linear relationship between both estimates for moderate and 

higher values of spatial coherence [DOF <~ 6 and var[SAI] >~ 0.2]. Thus, both measures of 

spatial coherence are consistent with each other, except when spatial coherence is low, as is the 

case for I where the estimate becomes bounded by the dimensions of the network. Figure 4 also 

shows that the spatial coherence of I is always far weaker than the one of O and S. 

Note that the variation of the spatial coherence of O across the networks does not depend 

significantly on the climatological frequency of occurrence itself. The percentage of wet days (i.e. 

receiving > 1 mm) varies between 14.3% (Kenya in OND) and 39.4% (Nordeste). The Spearman 
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rank correlation between these percentages and DOF of the frequency of occurrence is 0.14. 

Similarly, the rank correlation between the mean seasonal amount of each network and the DOF

of the seasonal amount is –0.37. Both correlations are not significant at the one-sided 90% 

significance level.

c. Robustness to rainfall thresholds 

It is instructive to test the dependence of DOF on the wet-day threshold, and the amplitude of 

daily rainfall amounts. Measurements errors, which are almost innately spatially-independent, as 

well as the threshold considered for recording rain (e.g. 0.1, 0.5 or 1 mm) could both induce noise 

in the different data sets, especially if these thresholds are variable in time and/or in space. It is 

also interesting to analyze the impact of large daily amounts on the spatial coherence of S. 

The robustness of DOF values is studied by (i) changing the threshold for defining wet days 

between 0 and 10 mm; and (ii) analyzing the seasonal sums of truncated daily rainfall values. The 

seasonal sum S(z) of truncated daily rainfall for a given cut-off t is defined as (Snijders, 1986)

(2) S(z) = min{ri,z}
i=1

n

∑ ,

where ri is the rainfall recorded on day i. The seasonal sum S(z) is thus insensitive to the 

magnitudes of rainfall amounts above t. If ∞=t , S(z) is simply the seasonal amount (Snijders, 

1986). 

The impact of wet-day threshold amount on the DOF for the interannual variability of O is 

plotted in Fig. 5a, with the impact of rainfall amount truncation on the DOF of the interannual 

variability of S plotted in Fig. 5b. In general, both impacts are rather weak. This is especially true 

for Queensland, Nordeste and Kenya-OND, which are the three networks with the strongest 

spatial coherence values (Table 2). For Northwestern India and Senegal, the DOF of O is fairly 
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constant for wet-day thresholds below 5 mm, but then increases for higher thresholds (Fig. 5a). A 

0 mm threshold clearly adds noise in the Senegal and Northwestern India cases. Very large daily 

amounts of rainfall (i.e. > 50 mm) also markedly increase the noise in S for Northwestern India 

(Fig. 5b). The fraction of wet days (> 0 mm) receiving 50 mm or more is 9.2% for Queensland, 

7.9% for Northwestern India, and less than 5% for the other networks. For Queensland and 

Northwestern India, these high-rainfall days account for 46.2% and 40.0% of seasonal rainfall 

respectively. However, the DOF of the frequency of occurrence of high-rainfall days are very 

different : 4.2 for Queensland and 12.1 for Northwestern India. respectively. Although the sample 

sizes of these high-rainfall events are relatively small, this suggests that they occur much more 

randomly in space and time in Northwestern India than they do in Queensland, and that seasonal 

anomalies of the latter are much more potentially predictable than the former. 

4. Spatial coherence and spatial scales of rainfall

In order to understand better the spatial coherence of seasonally-averaged rainfall, we examine 

next the spatial scales of rainfall variability at daily-to-seasonal time scales. The spatial scales of 

daily rainfall are estimated using spatial autocorrelation of rainfall intensity (i.e. wet-day amount, 

Bacchi and Kottegoda, 1995) and the probability of rainfall occurrence. The spatial correlation 

function of seasonal anomalies and the effect of the temporal integration across the season are 

then analyzed. Very similar results are obtained when the spatial correlation calculations are 

repeated using only pairs of stations having both data values present in the original data set (not 

shown).

a. Spatial scales of daily rainfall intensity

The spatial correlation of daily rainfall intensity is computed for each pair of stations, using only 

wet days (> 1 mm) at both stations. The spatial scale is usually defined as the de-correlation 

distance, τD, at which the correlation falls to 1/e = 0.37 (Dai et al., 1997; New et al., 2000; 
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Ricciardulli and Sardeshmukh, 2002; Smith et al., 2005). However, the low station densities of 

our networks do not allow a precise definition of τD, except perhaps for the Nordeste. The 

analysis is therefore restricted to a general assessment of the relationship between inter-station 

correlations and distances.

The Pearson correlation between each station pair is plotted against distance in Fig. 6 for each 

network, with average values denoted by circles, and the 1/e value dashed. All the networks 

exhibit a general exponential decay of correlation with increasing distance (Ricciardulli and 

Sardeshmukh, 2002; Smith et al., 2005). Correlations lie well below 1/e for distances > 100 km 

for all networks, with considerable differences between them for shorter distances. Thus, 100 km 

can be considered as an upper bound on τD for daily rainfall amounts, with smaller τD for the 

dense Nordeste network (Fig. 6d). This rough estimate is consistent with the general results of 

Ricciardulli and Sardeshmukh (2002) and Smith et al. (2005) using satellite measurements of 

deep convection and rainfall at the 3-hourly time scale. Note that considering the square root of 

daily amount to reduce skewness leads to very similar results (Fig. 6h).

b. Spatial scales of daily rainfall occurrence

The spatial autocorrelation is computed for each pair of stations using the frequency of 

occurrence coded as 0 for dry and 1 for wet day. The linear correlation between two binary 

variables is known as the phi correlation (φ) and can be computed in terms of simple frequency 

counts of [0,0]=A, [1,1]=B, [0,1]=C and [1,0]=D (Garson, 1982): 

(3)
B)B)(CD)(DC)(A(A

CDAB
++++

−=ϕ . 

Figure 7 shows plots of φ  for each network. The correlations are larger than for rainfall intensity 

(Fig. 6) for every network, and are closer to a linear decay of correlation with increased distance. 

Differences between the networks are somewhat larger than for intensities. The φ-values are 
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relatively small in the Nordeste (Fig. 7d) while they are larger for Senegal (Fig. 7a) and 

Northwestern India (Fig. 7c). Organized MCCs, cloud-clusters or synoptic-scale meteorological 

phenomena, for example in the form of squall-lines over Senegal and tropical depressions over 

Northwestern India, may be associated with the larger occurrence correlations there, as compared 

to the Nordeste. Note that the φ  correlation of rainfall occurrences is not necessarily larger than 

the Pearson correlation between rainfall amounts. The former depends ultimately on the 

probability of similar characteristics, wet or dry, at both stations; for example, two stations having 

50% (respectively 75%) of common dry or wet days will have a φ correlation near 0 (respectively 

near 0.5) if both stations have roughly the same probability of wet days. For a pair of stations 

having a φ correlation of 0.5, the correlation between intensities will be closer to 1 if rainfall 

intensities are broadly ranked in the same order for both stations (not shown).

c. Impact of temporal integration

The previous two sub-sections show that daily intensities are largely spatially-incoherent except 

at short distances, while daily occurrence tends to exhibit larger spatial scales. To tie these 

findings to our previous seasonal-scale results, we next investigate the impact of temporal 

integration on the spatial correlation function of daily rainy events from daily to seasonal time 

scale.

Figure 8 displays the spatial correlation functions for the frequency of occurrence (left), mean 

intensity (center) and amount (right), across the networks. The results are shown for averaging 

periods of 2, 5, 10, 30 days, in addition to the daily and seasonal-average values. By our 

definition, the spatial correlation function is identical for amount and mean intensity at the daily 

time scale, while the amount calculations include dry days for averaging periods of 2 days or 

more. 
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Frequency-of-occurrence spatial correlation values (Fig. 8, left) generally increase quite regularly 

with temporal averaging period. These increases are almost independent of inter-station distance, 

and are fairly similar for all the networks. Thus, temporal integration acts to increase spatial 

coherence across the entire network, and this is true for all the networks; it strongly suggests a 

common network-scale climate forcing on occurrence frequency. On the other hand, the near-

linear shape of the spatial correlation function of daily rainfall clearly survives the temporal 

integration, so that the seasonal-scale autocorrelation function resembles a superposition of daily 

and seasonal effects. Note that the largest autocorrelations are not necessarily achieved at the 

seasonal scale, but at monthly time scales in the case of Northwestern India, and less clearly in 

Kenya (MAM) and Senegal. Monthly values are likely to be inflated by spatial coherence 

associated with a strong seasonal cycle. This has been evaluated by removing an estimated 

seasonal cycle from the daily occurrence and amount data. The mean seasonal cycle was 

computed on a daily basis by averaging across years and low-pass filtering to remove periods 

shorter than 30 days. The resulting spatial correlation functions now increase quite regularly from 

daily to seasonal scale with the largest spatial correlations occurring on the seasonal scale (not 

shown). Over Northwestern India and Kenya in MAM, where the monthly and seasonal values 

are almost identical (not shown).

In stark contrast to rainfall frequency, there is very little impact of temporal averaging on mean 

intensity (Fig. 8, center), except for Kenya in OND, and to a small extent, Queensland. A 

spatially coherent signal in the mean intensity cannot be excluded in these cases, though it is 

much weaker than for frequency. The picture for rainfall amount (Fig. 8, right) is closer to that of 

occurrence frequency, with a rather regular increase of correlation with time scale. 
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The seasonal scale spatial correlations are compared among networks in Fig. 9, for amount and 

occurrence. There are large differences between the networks, with the spread larger for amount 

(Fig. 9a). The ranking of the curves in Fig. 9 is highly consistent with the DOF values in Table 2, 

with amounts being generally less spatially coherent. 

In terms of temporal integration, the spatial correlations of amount at the daily scale are lower 

than for occurrence, and this difference tends to persist to the seasonal scale (Fig. 9). However, 

the Nordeste network exhibits the smallest spatial correlations between daily amounts (Fig. 6d) 

and frequency of occurrences (Fig. 7d), yet is among the most coherent at the seasonal scale (Fig. 

9a,b). Another example is that the spatial scales of Kenyan daily rainfall are not obviously 

different in the MAM and OND seasons (Fig. 6-7e,f), while a larger spatial coherence is clearly 

seen at seasonal scale in OND (Fig. 9a,b). This suggests that spatial coherence of seasonal 

anomalies emerges mostly through a persistent modulation of the quasi-random daily rainfall 

rather than an organized pattern appearing repeatedly across the season (Krishnamurthy and 

Shukla, 2000). The ‘randomness’ of daily rainfall should be understood not necessarily as random 

size or patterns, but rather as random tracks of rainy systems across the network. 

d. Signal-to-noise interpretation

We return now to the simple statistical model of MRW06 in which interannual variability of 

rainfall anomalies at regional-scale was decomposed into a spatially-uniform signal, related to 

external forcing(s), plus a spatially-independent noise, resulting from small-scale processes and 

statistical sampling variations. Details of the model are provided for completeness in the 

appendix. This model leads to a constant spatial correlation function that is independent of 

distance, given by the contribution of signal to the total variance, while the dispersion of the 

correlations between pairs of stations is solely due to random sampling of the noise component. 

As it stands, this model cannot account for the decrease in spatial correlation with distance shown 
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in Fig. 9. We now demonstrate that a straightforward extension of the model to include a spatial 

modulation of the signal-to-noise ratio is able to account for the quasi-linear decrease of spatial 

correlation of occurrence frequency with distance. 

We have created 100 random simulations of seasonal rainfall occurrence O for each network 

according to equation A.5, with the proportion of the signal being set to match the external 

variance ratio estimated from the observed network (MRW06). The noise component is given by 

station independent random white noise. The amplitude of the noise at a given station is then 

weighted by the mean distance (wi) between this station and all others. The weights wi, are 

standardized so that their mean equals one. The complementary weight (1- wi) is applied to the 

signal. Thus isolated stations get more noise, and the signal-to-noise ratio is largest for stations 

that are bunched together. By construction, stations that are closer together will feel the common 

signal more strongly and thus be more highly correlated, while widely spaced station pairs will 

experience a larger noise fraction and thus be correlated more weakly.

Results from the Queensland and Northwestern India networks are shown in Fig. 10 for seasonal 

frequency of occurrence of rainfall. In both cases the statistical model can qualitatively account 

for the observed autocorrelation behavior, with a correlation decay distance near 700-800 km. 

Thus, the decrease in inter-station correlation with distance is not inconsistent with the simple 

conceptual model of the addition of a spatially-uniform signal plus a spatially-independent noise 

where the amplitude of signal and noise is spatially modulated. The difference between 

Queensland and Northwestern India is mainly due to the amount of signal, computed using the 

external variance ratio (MRW06), of 67% for Queensland and 58% for Northwestern India. Note 

that the random variability associated with stochastic sampling is large, even with the long 

records available in Queensland and Northwestern India. Similar results were obtained for the 

other networks (not shown). 
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5. Summary and discussion

a. Summary 

In this paper we have extended the analysis of spatial coherence of daily station rainfall 

characteristics, carried out by MRW06 over Senegal, to consider the principal rainy seasons of six 

different station networks – Senegal, the Brazilian Nordeste, Northern Queensland, Northwestern 

India, and Kenya (with two rainy seasons). They share similar geographical extents (120 000 -

450 000 km2), but the station density (Fig. 2), as well as topography and the seasonal evolution of 

rainfall differ among them. The primary rainfall statistics analyzed were spatial coherence of 

interannual anomalies in seasonal amount (S), wet-day occurrence frequency (O), and the mean 

intensity of rainfall on wet days (I=S/O). 

Our principal results generalize the previous findings of MRW06 for Senegal. 

• Over all the six tropical rainy seasons considered, seasonal anomalies of O and S were 

found to be much more spatially coherent than mean daily intensity (Figs. 3-4 and Table 

2). 

• The spatial coherence of O was found to be quite similar across the 6 rainy seasons, while 

S showed more variation, being higher for Queensland, the Nordeste and Kenya-OND, 

and lower for Northwestern India, Kenya-MAM, and Senegal (Fig. 4 and Table 2).

• While the spatial coherence of I was found to be considerably lower than that of O in all 

the networks, the Kenya and Queensland networks exhibited larger spatial coherence of I, 

particularly over Kenya during the OND season (Table 2).

• Although interannual variability in S was found to be almost equally accounted for by I

and O at station scale across all networks, the part of variance of S that is linearly 
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unrelated to O was found to be spatially incoherent and almost fully attributable to I in all 

the networks (Table 2). 

A second set of results addresses the relationship between the spatial coherence and the scales of 

rainfall, together with their behavior on daily-to-seasonal time scales. These were expressed in 

terms of the spatial autocorrelation function between station rainfall occurrences and intensity.

• The spatial autocorrelation functions of daily rainfall occurrence probability and daily 

rainfall intensity were both found to be consistent from network to network (Figs. 6-7). 

Daily intensities were found to exhibit an exponential decay with distance and to be 

virtually uncorrelated beyond about 100 km; differences amongst the networks below this 

distance could not be assessed accurately because of insufficient station density of our 

networks. 

• The spatial scales of daily rainfall occurrence probability were found to be larger than for 

intensity with a more linear spatial decay; they showed greater differences between the 

networks (Fig. 7). Average spatial scales were found to be larger for Northwestern India 

than for the Nordeste, possibly because of the impact of synoptic-scale lows and 

depressions over Northwestern India.

• At the seasonal scale, larger differences were found in rainfall scales between networks, 

particularly for seasonal amount (Fig. 9). These differences were found to be highly 

consistent with estimates of spatial coherence in terms of degrees of freedom. 

• Temporal integration was found to act very consistently on O and amount, while having 

almost no impact on I (Fig. 8).

• The shape of the spatial autocorrelation function of seasonal rainfall frequency can be 

recovered from a model of a spatially-uniform signal added to a spatially-independent 
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noise, provided that a realistic variation of the amplitude of signal and noise with 

geographical distances is included (Fig. 10).

A third set of general results is methodological: the spatial coherence was not found to be 

severely biased by the exact formulation of the statistical estimate, the definition of wet days, and 

the a priori geographical definition of the regions.

• Estimates of spatial coherence in terms of spatial degrees of freedom (DOF) and variance 

of the standardized anomaly index (var[SAI]) were found to be consistent with each other 

across all regions (Fig. 4). 

• Estimates of spatial coherence are least robust when it is weak, where they become 

sensitive to the number of stations on the network. This is only the case for I, for which a 

denser network would be expected to yield a more precise and reliable estimate of the 

spatial coherence.

• The spatial coherence of S and O is usually robust with respect to the threshold used to 

define wet days, as well as truncation of large daily rainfall amounts (Fig. 5). Over 

Northwestern India, very large daily amounts tend to decrease the spatial coherence of S

(Table 2 and Fig. 5). In most cases, very small daily rainfall amounts (between 0 and 1 

mm) are an additional source of noise and thus lower the spatial coherence (Fig. 5a).

b. Discussion

The main message of this paper is that daily rainfall properties are remarkably similar in different 

continental monsoonal regions. Interannual station anomalies in rainfall frequency and seasonal 

amount are always much more spatially coherent than those of mean rainfall intensity. The spatial 

coherence of seasonal rainfall totals largely reflects that of rainfall frequency. Seasonal anomalies 

in intensity are found to be relatively incoherent in all of the 6 networks and their contribution to 

spatial coherence of seasonal amounts is secondary because the DOF and var[SAI] estimates of 
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the latter are relatively insensitive to additive spatial noise; they effectively isolate the spatially 

coherent part.

At the daily scale, rainfall probability is found to be always more spatially coherent than rainfall 

intensity. The difference is especially large in regions of large-scale rainfall organization, i.e. the 

intraseasonal oscillation and monsoon depressions over Northwestern India, and African easterly 

waves and/or squall lines over Senegal. However, despite geographical and meteorological 

differences between the networks, temporal integration acts in a remarkably similar way across 

all of them; its impact is generally more pronounced on amount than occurrence, while being very 

small on intensity in most cases. 

The simplest interpretation is that large-scale climate forcing acts across the season on the 

occurrence, while intensity can largely be regarded as a random process. The general lack of 

spatial coherence of intensity does not exclude any modulation at interannual scale, but simply 

means that this modulation is not spatially coherent across the network. Our results are consistent 

with previous findings over the Sahel (Le Barbé and Lebel, 1997; Lebel et al., 2003) and India 

(Gadgil, 2003), and help to interpret the low predictability of rainfall intensity over North 

Queensland documented by Robertson et al. (2006) and over Senegal documented in MRW06. 

Although small, some spatial coherence of intensity over Kenya in OND, and perhaps 

Queensland was found which could be of potential significance.  

Station daily rainfall intensity (i.e. the amount recorded on wet days) tends to be strongly 

influenced by the smallest spatial scales of the precipitation process, i.e. the cumulus scale (e.g. 

Houze and Chen, 1977; Lopez 1978; Chen et al., 1996; Rickenbach and Rutledge, 1998). In 

contrast, daily rainfall probability tends to reflect larger-scale organization, from cloud clusters, 

synoptic-scale distrubances to large-scale tropical convergence zones. The respective spatial 
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correlation functions at the daily scale are thus found to be distinctly different, with a much more 

rapid fall-off for intensity than for occurrence across all networks (Fig. 6 vs. Fig. 7). Temporal 

integration of the highly-skewed daily intensity distribution is sensitive to outliers and thus 

produces seasonal-average intensities that are still largely spatially incoherent (Fig. 8). This is 

consistent with Mooley (1973) who showed that the amount of daily rainfall associated with 

synoptic-scale depressions over India displayed a large spatial variability, even if averaged 

rainfall over a large number of events is considered (see also Mitra et al., 1997). Similar findings 

have been reported for West-African MCCs (e.g. Abdou et al., 2003; Lebel et al., 2003; Balme et 

al., 2007). Previous studies have not analyzed rainfall occurrence in the same way, but our results 

suggest that temporal integration of daily rainfall probability yields to a substantial spatial 

coherence of station-scale rainfall frequencies and amounts at the seasonal scale. This occurs for 

all the networks, even in the case of Kenya in MAM where the association with ENSO is weak. 

Each tropical region is subject to its own complex mixture of various meteorological phenomena. 

Studies point to the larger impact of MCCs and synoptic scales over Northwestern India and 

Senegal, compared to Kenya and the Nordeste, where radar echoes are especially small (Da Silva 

Aragao et al., 2000). Propagation speed and areal extent of disturbances will also play a role. It is 

well-known that the intra-seasonal oscillation over India organizes the occurrence and path of 

monsoon depressions, and influences seasonal monsoon rainfall totals (e.g. Hartmann and 

Michelsen, 1989; Gadgil and Joseph, 2003; Goswami et al., 2003; Greene et al., 2007). 

Each of the station networks considered was chosen a priori, largely from data availability 

considerations. This could potentially lead to an underestimation of the true spatial coherence, if 

the networks encompass homogeneous sub-regions that behave independently. We have 

examined this issue in terms of the degree to which coherent sub regions can be identified from 

EOF analysis. However, the results (not shown) suggest that this is not a serious issue for any of 
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the networks considered, except perhaps for Kenya where both stations of Malindi are rather 

independent from the interior. 

One striking result is the different spatial coherence observed over Kenya where the OND season 

shows a distinctly greater coherence than during MAM (Table 2). Organised disturbances are 

seldom encountered, and there is little evidence of a significant change in the weather systems 

and/or in size of the area affected simultaneously by rain, between the two seasons. In fact, the 

spatial scales at daily time scale are hardly different between OND and MAM (Fig. 6e,f and 7e,f). 

The greater OND spatial coherence is associated with a robust seasonal teleconnection with 

ENSO (Ogallo, 1989; Hastenrath, 2000; Mutai and Ward, 2000; Camberlin and Philippon, 2002). 

An important implication of our study is that the seasonal predictability of station-scale rainfall is 

likely to be enhanced quite generally by considering rainfall frequency in place of seasonal 

rainfall total. This may be of particular relevance to agriculture, and underlines the need for daily 

station data.

Our results suggest that the analysis of the spatial coherence of observed fields is a valuable tool 

to infer properties of the underlying processes that control the spatio-temporal variability. 

Previous work suggests that potential predictability may be large at specific time scales, such as 

for the intraseasonal oscillation over India in summer (e.g. Webster et al., 1998; Gadgil and 

Joseph, 2003) and the analysis of spatial coherence at these time scales deserves further 

investigation. The five networks considered here are continental, and it would be instructive to 

consider maritime regions as well. 
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Appendix A: Definitions and empirical estimates of spatial coherence

Two scores are used to provide empirical estimates of the spatial coherence of seasonal anomalies 

between stations: the interannual variance of the standardized anomaly index (Katz and Glantz, 

1986), and the number of spatial degrees of freedom (Der Mégrédichtian, 1979; Fraedrich et al., 

1993 ; Bretherton et al., 1999). We write the individual station time series of rainfall amount (S), 

occurrence (O) and mean intensity (I) as xij, where i = 1... N denotes the year and j = 1... M

denotes the station, and the MN × matrices of S, O and I as X. These are firstly normalized to 

zero mean and unit variance

(A1)
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jij
ij
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)( −

=′

where jx is the long-term time mean and jσ is the interannual standard deviation for station j. 

The standardized anomaly index (SAI) is defined as the average of the normalized station time 

series of seasonal averages over the M stations (Katz and Glantz, 1986) ;
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The interannual variance of the SAI (var[SAI]) is a measure of the spatial coherence since it 

depends on the inter-station correlations ( ijρ ). Note that var[SAI] reaches a value of 1 when all M

stations are perfectly correlated. If all stations are assumed independent of each other (i.e. their 

mean correlation equals zero), its value (= 1/M) ranges from 0.0123 (Nordeste) to 0.11 (Kenya).

The number of degrees of freedom (DOF) can be estimated through an eigen-analysis, i.e. 

empirical orthogonal function (EOF) analysis, of the correlation matrix formed from the station 

seasonal-mean time series: 
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where ie are the eigenvalues of the correlation matrix. In the limiting case of 1=ie for all 

stations, DOF = M (or DOF = N-1 if  N < M) i.e. each station conveys independent information 

and the common “signal” is zero. On the other hand, if a single eigenvalue accounts for all 

variance of the field (= trace of the correlation matrix, that is M), then DOF = 1;  i.e. each station 

conveys the same information equal to the “signal” and the noise is zero. In the latter case, the 

station network can be described by a single EOF.

Both scores are linear and thus sensitive on large deviations from a Gaussian distribution. This is 

not expected to be a serious issue for the rainy seasons considered in this paper. However, a Box-

Cox transform (Box and Cox, 1964) can be used to obtain a more nearly Gaussian distribution; 

the transformation from x to x(λ) is defined only for positive values and is given by

(A4) λλ
λ 1

)(
−

=
x

x if 0≠λ and )ln()( xx =λ if λ=0.

The estimates of spatial coherence of seasonal amount, frequency of occurrence and daily mean 

intensity of rainfall shown in the paper have been re-computed after having applied the Box-Cox 

transform (Box and Cox, 1964) to the raw data. This leads to very similar results (not shown). 

The spatio-temporal variability of the rainfall variable X, recorded over a regional (i.e. roughly 

105-106 km2) window can be considered to result from the complex interactions between multi-

scale fixed (e.g. topography) and variable (e.g. SST) boundary forcings, together with the internal 

dynamics of the atmosphere. A simple conceptual model of the regional-scale seasonal anomalies 

relative to long-term mean can be constructed following MRW06 by adding a spatially uniform 

“signal” (C) to a spatially independent “noise” (N)

(A5) X = C + N.

Where the M columns of C each contain the single signal time series and N contains a set of M

independent white noise random time series. Here C can be interpreted as the integration of large-
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scale variable forcings while N represents all small-scale variable forcings as well as uncertainties 

associated with sampling and recording. 

In this context, it is possible for var[SAI] to be zero if half the stations are perfectly anti-

correlated with the others. Similarly, it is theoretically possible to have DOF=1 in the 

pathological case where neighboring stations are anti-correlated with each other, in a “noodled” 

pattern that is anything but spatially coherent in the usual sense. Thus, an inverse quasi-linear 

relationship is generally expected between DOF and var[SAI], except in the case of a “noodled” 

pattern where DOF=1 and var[SAI]=0.
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Figures captions

Figure 1: Scheme of convective cells (shaded small circles) embedded in a meso-Scale 

Convective Complex (MCC) (large white circle), across a network of stations (denoted as 

crosses). The location of the MCC is indicated at t0 (simple line), t+6 hours (double line) and 

t+12 hours (triple line). The speed and direction (here westward) of moving of MCC, as well as 

the shape and the relative location of convective cells inside the MCC are varying across the 

tropics.

Figure 2: Geographical location of the stations in (a) Senegal, (b) Queensland, (c) Northwestern 

India, (d) Nordeste and (e) Kenya. The stations are displayed as dots on a regional window of the 

same size (i.e. 10 deg x 9 deg) approximately centered on each network to ease the comparison. 

In Kenya, two stations are located at Malindi on the coast of Indian Ocean.

Figure 3: Degree of freedom –DOF– for (a) seasonal amount, (b) occurrence of rainfall (= 

number of wet days > 1 mm) and (c) mean intensity of rain during rainy days (= seasonal amount 

/ number of wet days) of the 9-stations Kenyan network. The full line with white circle (black 

circle) indicates DOF for March-May (October-December) and the dashed lines are the maximum 

and minimum values of the combinations considering M (between 2 and 8) stations amongst 9. 

The dotted lines indicate the lowest DOF reached in 10, 5 and 1% of a 39 x 9 white noise time 

series.

Figure 4: Scatter-plot of degree of freedom –DOF– (in ordinate) and interannual variance of the 

standardized anomaly index  –var[SAI]– (in abcissa) for the 6 networks (‘K1’; Kenya in March-

May, ‘K2’; Kenya in October-December, ‘NO’; Nordeste in February-April; ‘SE’; Senegal in 

July-September; ‘IN’; Northwestern India in June-September; ‘QU’; Queensland in December-

March) and the 3 seasonal variables (black circle: seasonal amount; white circle: occurrence of 

rainfall (wet day = day receiving measurable rain > 1 mm); cross; mean intensity of rainfall 

during wet days). Ellipses have been added to emphasize the range of both estimates of spatial 
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coherence for seasonal amount (full line), frequency of occurrence (dashed line) and mean 

intensity of rainfall (dotted line). 

Figure 5: (a) Degree of freedom –DOF– (ordinate) of the interannual variability of frequency of 

occurrence with different thresholds to define a day as wet (in abscissa), i.e. frequency of 

occurrence is computed for each season and station using a threshold of > 0, 1, 2, …, 10 mm to 

define a day as wet; (b) DOF (ordinate) of the interannual variability of seasonal amounts with 

different levels of truncation of daily amounts (in abscissa) i.e. seasonal amounts are computed 

using raw daily amounts (Inf), and truncated daily amounts to respectively 100, 50, 20, 10, 5, 1 

mm when they are above this amount. 

Figure 6: Spatial correlation (in ordinate) function of daily rainfall amounts  vs distance in km (in 

abscissa) for (a) Senegal in July-September, (b) Queensland in December-March, (c) 

Northwestern India in June-September, (d) Nordeste in February-April, (e) Kenya in March-May 

and (f) Kenya in October-December. The correlations are computed for each pair, represented as 

dot, using only wet day (> 1 mm) at both stations. The bold circles give the averaged correlations 

for mean distance in range 0-99, 100-199 km, etc. The last two panels shows the average spatial 

correlation functions for the daily rainfall amounts (g) and the square root of daily rainfall 

amounts (h) for the 6 networks. The 1/e correlation (~ 0.37) is shown for convenience as a dashed 

line. 

Figure 7: Spatial correlation (in ordinate) function of daily frequency of occurrence – φ

correlation – of rainfall vs distance in km (in abscissa) for (a) Senegal in July-September, (b) 

Queensland in December-March, (c) Northwestern India in June-September, (d) Nordeste in 

February-April, (e) Kenya in March-May and (f) Kenya in October-December. φ correlation is 

computed for each pair, represented as dot, using frequency of occurrence of wet day > 1 mm. 

The bold circle gives the averaged φ correlation for mean distance in range 0-99, 100-199 km, 
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etc.. The panel (g) shows the spatial correlation functions for the daily rainfall occurrence  for the 

6 networks. The 1/e correlation (~ 0.37) is shown for convenience as a dashed line.

Figure 8: Mean spatial correlation (in ordinate) function versus the mean distance in km (in 

abscissa) for the frequency of occurrence (first column; (a) Senegal in July-September, (d) 

Queensland in December-March, (g) Northwestern India in June-September (j) Nordeste in 

February-April (m) Kenya in March-May and (p) Kenya in October-December), mean intensity 

of rainfall (second column; (b) Senegal in July-September, (e) Queensland in December-March, 

(h) Northwestern India in June-September (k) Nordeste in February-April (n) Kenya in March-

May and (q) Kenya in October-December) and amount (third column; (c) Senegal in July-

September, (f) Queensland in December-March, (i) Northwestern India in June-September (l) 

Nordeste in February-April (o) Kenya in March-May and (r) Kenya in October-December)  for 

the daily (full bold line), 2-day (line + lower triangle), 5-day (line + upper triangle), 10-day (line 

+ circle), 30-day (line + square) and seasonal time scales. The spatial correlation functions are 

displayed on the same scale to ease the comparison.

Figure 9: Spatial correlation (in ordinate) function of seasonal amount (a) and frequency of 

occurrence (b) vs distance (in abscissa). The mean spatial correlation is averaged over each 

network and shown for mean distance in range 0-99, 100-199 km, etc. The 1/e value (~ 0.37) is 

shown for convenience as a dashed line. 

Figure 10: Observed (large gray dots) and simulated (small black dots) spatial correlation (in 

ordinate) function vs distance in km (in abscissa) for seasonal frequency occurrence of rainfall for 

Queensland (a) and Northwestern India (b). The simulations come from 100 random fields having 

the same external variance ratio (= amount of signal) as the observed fields and where the 

amplitude of signal (respectively noise) is spatially modulated as the 1 minus the mean distance 

(respectively mean distance) of each station with the remaining ones (see text). The mean spatial 

correlation for 0-99, 100-199 km is shown for observation (circle + full line) and simulation 

(square + dashed line).
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Table captions

Table 1 : Summary of the 6 seasonal networks analyzed in this study. 

Table 2 : Squared correlations between seasonal-average quantities (S: seasonal amount; O: 

frequency of wet day and I: mean intensity of rainfall, all computed using a threshold of 1 mm for 

defining wet days), averaged over each network (columns 2-5), together with network-averaged 

estimates of the number of degrees of freedom (DOF) of each station quantity (columns 6-9). 
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Figure 1: Scheme of convective cells (shaded small circles) embedded in a Meso-Scale Convective 
Complex (MCC) (large white circle), across a network of stations (denoted as crosses). The location of the 
MCC is indicated at t0 (simple line), t+6 hours (double line) and t+12 hours (triple line). The speed and 
direction (here westward) of moving of MCC, as well as the shape and the relative location of convective 
cells inside the MCC are varying across the tropics.
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Figure 2: Geographical location of the stations in (a) Senegal, (b) Queensland, (c) Northwestern India, (d) 
Nordeste and (e) Kenya. The stations are displayed as dots on a regional window of the same size (i.e. 10 
deg x 9 deg) approximately centered on each network to ease the comparison. In Kenya, two stations are 
located at Malindi on the coast of Indian Ocean.
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Figure 3: Degree of freedom –DOF– for (a) seasonal amount, (b) occurrence of rainfall (= number of wet 
days > 1 mm) and (c) mean intensity of rain during rainy days (= seasonal amount / number of wet days) of 
the 9-stations Kenyan network. The full line with white circle (black circle) indicates DOF for March-May 
(October-December) and the dashed lines are the maximum and minimum values of the combinations 
considering M (between 2 and 8) stations amongst 9. The dotted lines indicate the lowest DOF reached in 
10, 5 and 1% of a 39 x 9 white noise time series.
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Figure 4: Scatter-plot of degree of freedom –DOF– (in ordinate) and interannual variance of the 
standardized anomaly index –var[SAI]– (in abcissa) for the 6 networks (‘K1’; Kenya in March-May, ‘K2’; 
Kenya in October-December, ‘NO’; Nordeste in February-April; ‘SE’; Senegal in July-September; ‘IN’; 
Northwestern India in June-September; ‘QU’; Queensland in December-March) and the 3 seasonal 
variables (black circle: seasonal amount; occurrence of rainfall (wet day = day receiving measurable rain > 
1 mm); cross; mean intensity of rainfall during wet days). Ellipses have been added to emphasize the range 
of both estimates of spatial coherence for seasonal amount (full line), frequency of occurrence (dashed line) 
and mean intensity of rainfall (dotted line). 
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Figure 5: (a) Degree of freedom –DOF– (ordinate) of the interannual variability of frequency of 
occurrence with different thresholds to define a day as wet (in abscissa) i.e. frequency of occurrence is 
computed for each season and station using a threshold of > 0, 1, 2, …, 10 mm to define a day as wet; (b) 
DOF (ordinate) of the interannual variability of seasonal amounts with different levels of truncation of 
daily amounts (in abscissa) i.e. seasonal amounts are computed using raw daily amounts (Inf), and 
truncated daily amounts to respectively 100, 50, 20, 10, 5, 1 mm when they are above this amount. 
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Figure 6: Spatial correlation (in ordinate) function of daily rainfall amounts  vs distance in km (in abscissa) 
for (a) Senegal in July-September, (b) Queensland in December-March, (c) Northwestern India in June-
September, (d) Nordeste in February-April, (e) Kenya in March-May and (f) Kenya in October-December. 
The correlations are computed for each pair, represented as dot, using only wet day (> 1 mm) at both
stations. The bold circles give the averaged correlations for mean distance in range 0-99, 100-199 km, etc. 
The last two panels shows the average spatial correlation functions for the daily rainfall amounts (g) and 
the square root of daily rainfall amounts (h) for the 6 networks. The 1/e correlation (~ 0.37) is shown for 
convenience as a dashed line. 
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Figure 7: Spatial correlation (in ordinate) function of daily frequency of occurrence – φ correlation – of 
rainfall vs distance in km (in abscissa) for (a) Senegal in July-September, (b) Queensland in December-
March, (c) Northwestern India in June-September, (d) Nordeste in February-April, (e) Kenya in March-
May and (f) Kenya in October-December. φ correlation is computed for each pair, represented as dot, using 
frequency of occurrence of wet day > 1 mm. The bold circle gives the averaged φ correlation for mean 
distance in range 0-99, 100-199 km, etc.. The panel (g) shows the spatial correlation functions for the daily 
rainfall occurrence  for the 6 networks. The 1/e correlation (~ 0.37) is shown for convenience as a dashed 
line.
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Figure 8: Mean spatial correlation (in ordinate) function versus the mean distance in km (in abscissa) for 
the frequency of occurrence (first column; (a) Senegal in July-September, (d) Queensland in December-
March, (g) Northwestern India in June-September (j) Nordeste in February-April (m) Kenya in March-May 
and (p) Kenya in October-December), mean intensity of rainfall (second column; (b) Senegal in July-
September, (e) Queensland in December-March, (h) Northwestern India in June-September (k) Nordeste in 
February-April (n) Kenya in March-May and (q) Kenya in October-December) and amount (third column; 
(c) Senegal in July-September, (f) Queensland in December-March, (i) Northwestern India in June-
September (l) Nordeste in February-April (o) Kenya in March-May and (r) Kenya in October-December)  
for the daily (full bold line), 2-day (line + lower triangle), 5-day (line + upper triangle), 10-day (line + 
circle), 30-day (line + square) and seasonal time scales. The spatial correlation functions are displayed on 
the same scale to ease the comparison.
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Figure 9: Spatial correlation (in ordinate) function of seasonal amount (a) and frequency of occurrence (b) 
vs distance (in abscissa). The mean spatial correlation is averaged over each network and shown for mean 
distance in range 0-99, 100-199 km, etc. The 1/e value (~ 0.37) is shown for convenience as a dashed line. 
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Figure 10: Observed (large gray dots) and simulated (small black dots) spatial correlation (in ordinate) 
function vs distance in km (in abscissa) for seasonal frequency occurrence of rainfall for Queensland (a) 
and Northwestern India (b). The simulations come from 100 random fields having the same external 
variance ratio (= amount of signal) as the observed fields and where the amplitude of signal (respectively 
noise) is spatially modulated as the 1 minus mean distance (respectively mean distance) of each station 
with the remaining ones (see text). The mean spatial correlation for 0-99, 100-199 km is shown for 
observation (circle + full line) and simulation (square + dashed line).
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Table 1: Summary of the 6 seasonal networks analyzed in this study. 

Number 
of 

Stations

Months Years Density 
(stations 
/ km2)

Senegal 13 JAS 1961-98 1/13000
Queensland 11 DJFM 1959-98 1/26000
NW India 28 JJAS 1901-70 1/15000
Nordeste 81 FMA 1974-02 1/1600
Kenya 9 MAM 1960-98 1/29000
Kenya 9 OND 1960-98 1/29000
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Table 2 : Squared correlations between seasonal-average quantities (S: seasonal amount; O: 

frequency of wet day and I: mean intensity of rainfall, all computed using a threshold of 1 mm for 

defining wet days), averaged over each network (columns 2-5), together with network-averaged 

estimates of the number of degrees of freedom (DOF) of each station quantity (columns 6-9). 

S vs O S vs I O vs I Socc-S vs
I

DOF O DOF S DOF
(S-Socc)

DOF I

Senegal .49 .41 .05 .90 3.1 3.8 9.2 9.9
Queensland .61 .51 .04 .88 2.0 2.2 6.5 6.1
NW India .65 .35 .05 .86 2.7 5.3 14.7 14.1
Nordeste .55 .55 .07 .85 2.3 2.1 11.4 11.6
Kenya MAM .76 .58 .20 .62 3.6 4.0 6.8 6.4
Kenya  OND .49 .49 .02 .88 2.0 2.0 6.0 5.2


