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Abstract

A non-homogeneous hidden Markov model (NHMM) is used to make stochas-

tic simulations of March–August daily rainfall at 10 stations over the southeastern

United States, 1923–98. Station-average observed daily rainfall amount is prescribed

as an input to the NHMM, which is then used to disaggregate the rainfall in space.

These rainfall simulations are then used as inputs to a CERES crop model for maize.

Regional-average yields derived from the NHMM rainfall simulations are found to

correlate very highly (r = 0.93) with those generated by the crop model using ob-

served rainfall; station-wise correlations range between 0.44 and 0.74.

Rainfall and crop simulations are then constructed under increasing degrees of tem-

poral smoothing applied to the regional-rainfall input to the NHMM, designed to ex-

clude the sub-monthly weather details that would be unpredictable in seasonal climate

forecasts. Regional yields are found to be remarkably insensitive to this temporal

smoothing; even with 90-day lowpass filtered inputs to the NHMM, resulting yields

are still correlated at 0.85 with the baseline simulation, while station-wise correlations

range between 0.18 and 0.68.

From these findings, we expect regional maize yields over the SE United States to
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be largely insensitive to year-to-year details of sub-seasonal rainfall variability; they

should be downscalable, in principle, using an NHMM from climate forecasts archived

at daily resolution, with the important caveat that the latter need to be skillful enough

at the 90-day time scale.

As a by-product of the analysis, we interpret subseasonal-to-interdecadal summer

rainfall variability over the SE United States, in terms of six discrete weather states

indicative of a monsoon-like climate regime. Low simulated-yield years are found to

be associated with delayed summer-rainfall onset.

3



1. Introduction

Seasonal predictions of precipitation made with general circulation models (GCMs) are often skill-

ful for some regions and seasons, particularly during El Niño-Southern Oscillation (ENSO) events

(e.g., Goddard et al. 2006). These predictions are typically expressed probabilistically, e.g. in

terms of tercile-categories of three-month average precipitation anomalies. The advent of seasonal

climate prediction has raised the possibility of harnessing these predictions for use in decision

making in agriculture and other areas of risk management. However, there is a mismatch between

the temporal and spatial scales on which the forecast is typically issued, and the scales often needed

in climate risk management. The grid spacing of GCMs currently used for seasonal prediction is

typically about 3o in latitude and longitude, while the skilfull spatial scale of these models has

been argued to be of the order of several grid boxes, i.e. about 10o (von Storch et al. 2000). Short

time-scales (days–weeks) are generally dominated by atmospheric “weather noise,” while the pre-

dictable “signal” of seasonal climate evolves according to surface ocean and land conditions on

longer (monthly–seasonal) scales where the signal-to-noise ratio becomes larger (Palmer and An-

derson 1994). Crops are known to be sensitive to the caprices of weather at a particular locality, and

the frequency and length of dry spells. In clayey soils, they can also be sensitive to water-logging,

in which case the frequency and length of wet spells are important too.
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There is, nonetheless, mounting evidence of the utility of seasonal climate forecasts for agri-

culture (Hammer et al. 2001; Ingram et al. 2002; Jagtap et al. 2001; Patt et al. 2005; Challinor et al.

2005). While seasonal rainfall totals are often only moderately correlated with crop yields, the lat-

ter may be more closely related to the frequency of dry and wet spells (Frere and Popov 1986). The

crop acts as a nonlinear temporal integrator of weather across its growing season. In certain situa-

tions this integration may enhance the seasonally predictable signal of climate, beyond that present

in the seasonal rainfall total. Regional averaging of yield is likely to enhance the signal-to-noise

ratio further.

Crops are especially sensitive to weather conditions during particular windows of time during

the growing season, such as flowering (see Doorenbos and Kassam 1979). Ines et al. (2002) found

that even with adequate rainfall at the beginning of the growing season, reduced crop yield is

expected if water is not available during the mid-development to maturity stage of the crops.

Stochastic weather generators, based on a Markov chain assumption for the daily occurrence

probability of rainfall, have been shown to be effective at simulating the seasonal statistics of

run-lengths of dry and wet days (Wilks and Wilby 1999; Wilks 2002), although higher-order

chains may be needed in order to capture dry-spell distributions accurately (Wilks 1999). The

non-homogeneous hidden Markov model (NHMM) has proved to be a promising approach to con-
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structing multi-station weather generators (Hughes and Guttorp 1994). Over NE Brazil, Robertson

et al. (2004) found that interannual variability in the frequency-of-occurrence of 10-day dry spells

could be simulated reasonably, using an NHMM with GCM seasonal-mean large-scale precipita-

tion as a predictor. Similar downscaling results were obtained over Queensland, Australia (Robert-

son et al. 2006). The NHMM has been applied to two other locations in Australia in downscaling

studies (Charles et al. 2003, 2004).

The HMM factorizes the joint probability distribution of daily rainfall sequences at a network

of stations by introducing a small number of discrete rainfall states. The station rainfall occurrence

and amount recorded on a particular day is assumed to be conditional only on the state that is

active, with only one state active on any given day. The states are termed “hidden” in the sense

that they are not directly observable, and a Markov chain is used to model, probabilistically, the

temporal transitions between them. In the non-homogenous HMM, the probabilities of transitions

between states are modeled as a function of exogenous atmospheric variables, or “predictors.”

By linking synoptic-scale predictors (i.e. on the scale of the rainfall network) to station-scale daily

rainfall, the NHMM can serve as a downscaler—or disaggregator—in space. In the case of seasonal

forecasting the predictors are generally slowly varying in time, in which case the NHMM can act

as a temporal downscaler as well. As a potentially useful byproduct, the model’s hidden states

6



can provide a synoptic rainfall climatology for the study region, including atmospheric circulation

patterns via compositing.

In this study, we test the ability of an NHMM to disaggregate regional-averaged observed

rainfall in space and time for crop simulation. Besides evaluating the NHMM as a downscaling

method, our goal is to apply it to determine the effective temporal resolution required of seasonal

climate forecasts, in order for them to be useful to agriculture. To do this, we drive the NHMM

with observed regional-average rainfall which is progressively smoothed in time, thereby elimi-

nating variability on shorter time scales. The extent to which the NHMM is able to mimic this

weather variability stochastically, is then evaluated in terms of simulated crop yield. This is an

important issue in deciding the temporal resolution that seasonal forecasts need to address from

an agricultural perspective (e.g. weekly, monthly or seasonal). One of our main conclusions is

that while seasonal forecasts are currently typically issued as 3-month averages, a 90-day low-pass

filtered daily timeseries would be more useful for predicting crop yields.

The study is conducted using a network of 10 daily rainfall station records over the SE United

States. Simulated maize yields obtained using observed rainfall serve as a baseline for evaluating

yields derived from NHMM rainfall simulations, made from regional-average observed rainfall.

This may be interpreted as a perfect-model approach, in which the regional-average rainfall is
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taken to be perfectly simulated by a GCM, and errors in the crop modeling are neglected. The

HMM, NHMM, crop model and the data used are described in Sect. 2. The HMM states of daily

rainfall amounts are derived in Sect. 3. Our main rainfall and maize yield simulation results are

presented in Sect. 4. A meteorological description of HMM states is given in Sect. 5, together

with an interpretation of sub-seasonal to interdecadal rainfall variability over the SE U.S. in terms

of these states. The summary and conclusions are reported in Sect. 6.

2. Data and models

a. Observed data sets

We use daily rainfall amounts at 5 stations in north Florida and 5 in south Georgia, for the 184-day

March 1 – August 31 season, 1923–1998. These data were obtained from the National Climate

Data Center (http://www.ncdc.noaa.gov). Stochastic infilling was used to fill data gaps, using the

weather generator WGEN (Richardson and Wright 1984) in Weatherman (Pickering et al. 1994).

WGEN simulates rainfall for an individual station using a first-order Markov model for rainfall

occurrence, and a gamma distribution for intensity on days with rainfall. Four of the station records

do not go back to 1923 (Apalachicola from 1931; Chipley from 1939; Jacksonville Beach from
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1944; Camilla from 1938) and the stochastic infilling was used to fill these early parts of the

records, as well as other small gaps in the records.

Figure 1 shows the locations of the 10 stations together with the March–August climatological

daily probability of rainfall occurrence (defined as days with ≥ 1 mm), and average wet-day

amount. The rainfall occurrence probability is estimated as the relative frequency of daily rainfall

over a season, and will be referred to as rainfall frequency from now on. The average rainfall

amount on wet days will be referred to as rainfall intensity. Average rainfall frequency and intensity

exhibit similar geographical distributions that are fairly uniform across the 10 stations.

The mean seasonal variation in frequency and intensity is depicted in Fig. 2, in terms of 76-

year averages for each pentad. Frequency decreases to a minimum toward the end of April, and

then increases strongly to reach a summer maximum in June and July. Stations 2 and 6 in the

north-central part of the Florida panhandle have the largest summer rainfall frequencies. Mean

intensities are fairly uniform across the March–August period, so that rainfall seasonality is pri-

marily controlled by rainfall frequency; the “onset” of the summer rainfall season occurs around

mid-June. The multi-year pentad averages of intensity are much noisier than those of frequency,

consistent with the findings of Moron et al. (2006).

Relationships with atmospheric circulation are explored using the National Centers for Envi-
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ronmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis data

(Kalnay and Coauthors 1996), using the years 1948–98.

b. The crop model

A crop growth simulation model is a simplified representation of crop growth based on knowledge

of ecophysiological processes. They have become essential tools for understanding and predict-

ing crop response to interactions between climate, soil and management. CERES-Maize is one of

the crop models available in DSSATv3.5 (Jones et al. 1998). It simulates the duration of growth,

growth rate and partitioning of new biomass among the economic (ears and grain) and other (leaf,

stem, roots) components of the plant (Ritchie et al. 1998). Biomass growth is based on solar ra-

diation intercepted and radiation-use efficiency (RUE). Biomass partitioning is a function of the

stage of development and source-sink relationships. Yield is determined as the product of plant

density, grain numbers per plant and average kernel weight at maturity. To account for impacts of

water deficits on the crop, CERES-Maize models the soil water balance at a daily time step, as

a function of precipitation, irrigation, soil evaporation, transpiration, runoff and drainage (Ritchie

1998). It uses a modified tipping bucket approach to account for movement between soil layers.

When the capacity of the soil and root system to supply water to the plant constrains transpira-
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tion to less than the calculated potential transpiration rate (Priestley and Taylor 1972), potential

biomass accumulation is reduced proportionally. The resulting reduction of assimilation affects

overall growth. Because carbon assimilate availability near the time of flowering determines the

number of grains per plant, yield is particularly sensitive to water deficits during this period. Be-

cause leaf area expansion and partitioning between shoots and roots are even more sensitive than

biomass accumulation to water deficits, water stress during early vegetative growth can reduce

final yields by limiting capacity to intercept solar radiation later in the growing season.

We use CERES-Maize to simulate maize yields for the 10 selected locations during the summer

cropping season of March–August for the 74 years 1923–1996. Note that the last two years of the

rainfall dataset (1997–1998) were not used in the crop modeling. Because of our focus on the

impact of rainfall variability, daily maximum and minimum temperature, and solar radiation are

set to their monthly climatological means, conditioned on the occurrence of rainfall (≥ 0.1 mm).

These monthly values for Gainesville (30.4N, 82.6W) are used as surrogates for the other sites

in Florida, and data from Tifton (31.5N, 83.5W) are used for the sites in Georgia. We used soil

properties from the Millhopper fine sand [plant-extractable soil water (PESW) capacity of 30.9

mm for the top 50 cm] for the Florida sites, and Tifton loamy sand (PESW=48.9 mm for the top

50 cm) for the sites in Georgia. The soil depths used for crop simulations in Georgia and Florida
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sites are 170 and 180 cm respectively. The soil columns are assumed to drain freely. The crop

cultivar used is McCurdy 84aa. Sowing was March 5 for the Florida sites and April 1 for the sites

in Georgia. Crop growth was simulated without irrigation.

The yields simulated using observed daily rainfall serve as a baseline for this study. In the

10-station average, the resulting simulated yields are only moderately correlated with the observed

seasonal total station-average rainfall (r = 0.57). Thus, only about 32% of the interannual variance

of yields (given by r2) can be represented by a linear regression model of the dependence between

seasonal rainfall total and crop yield. Much of this paper is concerned with accounting for the

remaining two-thirds of the simulated yield variability.

c. The Hidden Markov Model (HMM)

The HMM used here follows the approach of Hughes and Guttorp (1994) to model daily rainfall

occurrence, while additionally modeling rainfall amounts; it is fully described in Robertson et al.

(2004, 2006). In brief, the time sequence of daily rainfall measurements R1:T on a network of

stations is assumed to be generated by a first-order Markov chain of hidden (unobserved) weather

states S1:T = (S1, . . . , ST ), where St takes values from 1 to K, and K is the chosen number

of states. The second defining assumption of the HMM is that the instantaneous rainfall Rt for a
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particular day t is assumed to be independent of both (a) all other states, and (b) rainfall on all other

days. We further assume that the M station components of the vector of rainfall amounts at time t

are conditionally independent of each other given the hidden state St; some spatial dependence is

captured implicitly via the state variable.

Daily rainfall amount at each station is modeled as a finite mixture of components, consisting

of a delta function to model dry days, and a combination of two exponentials to describe rainfall

amounts on wet days. Previous studies have demonstrated that a mixture of two exponentials well

represents daily rainfall amounts (e.g., Wilks and Wilby 1999). Fitting the mixture parameters is

accomplished as an integral part of the HMM, via the expectation-maximization (EM) algorithm

(Dempster et al. 1977), similar to the approach of Bellone et al. (2000). Details of the EM es-

timation algorithm were presented Robertson et al. (2003) for a model which is similar except

that precipitation occurrence data is modeled instead of amounts. The additional EM equations

required to handle estimation of the parameters for the state-dependent amount models above are

described in Kirshner (2005).

In the non-homogeneous HMM the state-transition matrix Γ is no longer stationary, and the

transition probabilities are defined to be a function of a (potentially) multivariate “predictor” input

time series X1:T , corresponding (for example) to other variables that can influence the evolution of
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the weather state sequence S1:T . In this paper, the transition probabilities are defined as a logistic

function of the 10-station average observed daily rainfall amount, used as the (univariate) predictor

variable. The regional average is standardized by subtracting its time mean over the 76 seasons,

and dividing by the daily standard deviation. The logistic function then maps this real-valued daily

predictor series onto a probability value, bounded between zero and one—see Fig. 15 of Robertson

et al. (2004). More complete details on this type of model are provided in Hughes et al. (1999) and

Robertson et al. (2003).

The stochastic simulations of daily rainfall amount are used as inputs to the crop model, simu-

lating the crop growth for each of 100 NHMM simulations, over the period 1923–96. The resulting

yields are compared against baseline yields derived from the crop model when using observed sta-

tion rainfall itself.

3. States of daily rainfall amounts

a. Number of states

As in Robertson et al. (2004), cross-validation is used to evaluate the quality of the fitted HMMs

in terms of log-likelihood as a function of K, the number of states. Here, five-year blocks of data
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were withheld, the model trained on the remaining 70 years (omitting the last year of the data

set), and the simulations compared with observed rainfall for the 14 5-year validation periods. In

each case the EM algorithm was run 10 times from different initial seeds, selecting the run with

the highest log-likelihood. The resulting log-likelihood values for each model were examined for

K = 2− 10, and found to increases monotonically with K, despite the use of cross-validation (not

shown). Similar results were obtained for the Bayesian Information Criterion (BIC), a penalized

likelihood measure that is often used to determine the appropriate number of states in HMMs. We

chose K = 6, where the log-likelihood values start to flatten out. Using a manageable number

of states (here 6), enables a more parsimonious description of the rainfall variability that is better

suited to the interpretation in Sect. 5. The results for K = 3 were also inspected.

b. Estimation of the model parameters

Having chosen the 6-state model, its parameters were estimated from the entire 76-season rainfall

record. The resulting rainfall parameters are illustrated in Fig. 3, in terms of the probability of rain

(a–f), and the mean rainfall intensity (g–l). The latter was computed from the parameters of the

mixed exponential distribution.

State 6 is the “dry” state with very small rainfall probabilities. States 4 and 5 are both “wet”
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with rainfall probabilities around or exceeding 0.5, quite uniformly at all stations. State 5 is char-

acterized by very large mean wet-day amounts (> 20 mm/day). States 1–3 are characterized by

spatial contrasts, particularly visible in occurrence probabilities; states 2 and 3 tend to mirror each

other, with NW–SE contrasts in probability. State 1 has larger occurrence and amounts in the

northwest.

The state-transition matrix is given in Table 1. The larger self-transition probabilities on the

main diagonal indicate substantial temporal persistence, particularly for states 6, 3 and 4. On the

other hand, persistence is very low for state 1, which has a larger probability of transitioning to

states 2, 3, and especially 6, than persisting. There are other preferred transitions, such as from

states 2, 4 and 5 to state 1, and we will comment on their meteorological interpretation in Sect. 5

below.

4. Simulations

In this section, we use the NHMM to make spatially-disagregrated rainfall simulations at each

of the 10 stations, using the station-average of observed daily rainfall as input to the NHMM.

The 10 stations have similar climatological frequencies and intensities (Fig. 1), justifying a simple

arithmetic average among stations. The resulting stochastic rainfall simulations are then passed to
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the crop model which is integrated for each station in turn. In addition to examining the NHMM’s

ability to spatially disaggregate regional-average rainfall, we consider temporally low-pass filtered

versions of the input time series. In this way, we examine the NHMM’s temporal disaggregation.

We evaluate the model in terms of both its rainfall simulations and crop yields derived from these

simulations, using 100 stochastic simulations of the 1923–98 rainfall record. No cross-validation

is used. However, we have repeated the cases with unfiltered and 90-day low-pass filtered inputs,

using leave-six-years-out cross-validation. The correlations reported below are found to be almost

unchanged under cross-validation.

a. Rainfall simulations

The NHMM simulations of rainfall made from daily unfiltered regional-average observed rainfall

are shown in Fig. 4, plotted in terms of the seasonal averages of (a) amount, (b) rainfall frequency

and (c) intensity, averaged over the 10 stations. The ensemble mean of the 100 simulations is

plotted versus the observed, together with the inter-quartile and full range of the 100-member

simulation distribution. Some summary statistics are included in each panel. Interannual variability

of rainfall amount is very well simulated (r = 0.97, RMSE=0.17mm), demonstrating that the

NHMM is successful at the regional scale. The simulations of interannual variability of daily
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rainfall frequency (r = 0.77, RMSE=3.8 days) and intensity (r = 0.67, RMSE=0.99mm) are less

good.

The interannual variance of the simulated ensemble mean is underestimated by 25% for amount

and intensity, and 21% for rainfall frequency. This bias is largely a result of averaging over the 100

simulations: on average, the individual simulations underestimate the variance of amount by 6%,

of frequency by 9%, but overestimates the variance of intensity by 20%. The mean bias errors are

very small (all within about 1%), although some non-stationarity is visible in rainfall frequency,

with the simulations tending to overestimate the occurrence of rain prior to about 1940, and to

underestimate it thereafter.

The anomaly correlation in Fig. 4 is highest for amount, which is to be expected since rainfall

amount is used to drive the NHMM. If instead station-average rainfall frequency is used as the

NHMM’s input, the resulting interannual correlations for amount, frequency, and intensity become

r = 0.80, 0.98, 0.15 respectively. Thus frequency is a very poor predictor of intensity.

Because crop water stress is influenced by the timing and frequency of dry spells, we examined

10-day dry-spell frequency. Anomaly correlations between simulated and observed seasonally-

averaged 10-day dry-spell frequency are tabulated in Table 2. Here a dry spell is defined as a

run of at least 10 dry (i.e. rainfall ≤ 1 mm) days, with no more than one intervening wet day.
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Allowing an intervening wet day in the definition substantially reduces the NHMM’s tendency to

underestimate the number of long dry spells1. The mean bias error in 10-day dry-spell frequency is

always less that 15% at the individual stations, and 2–5% for the station average, depending on the

input series. The number of observed 10-day dry spells varies between 1 and 9 per season, across

the 10 stations, occurring predominantly during spring.

The interannual variability of station-average dry-spell frequency is less well simulated (r =

0.68) than rainfall frequency (r = 0.77), and the interannual variance of the simulated series of

dry-spell frequency is only 41% of the observed one. These correlation values increase when rain-

fall frequency is used as the predictor, in place of amount, reaching 0.82 and 0.98 respectively.

The poorer performance for the dry-spell statistic relative to rainfall frequency (0.82 vs. 0.98)

can largely be attributed to effects of statistical sampling: if the individual simulations are com-

pared against the 100-member ensemble mean (again in terms of station averages), it is found that

95% of them have anomaly correlations of dry-spell counts less than or equal to 0.84, while the

corresponding figure for rainfall frequency is 0.96. Thus, the individual simulations naturally dif-

fer more form each other in terms of seasonal dry-spell counts than they do in terms of rainfall

frequency.

1The first-order Markov chain tends to under-represent long dry spells. In addition, because the Markovian de-
pendence in the NHMM is modeled at the state level, the conditional dependence of station rainfall on the state may
further reduce wet/dry spell lengths (Robertson et al. 2004).
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The NHMM’s performance at the individual station level is tabulated in Table 2 in terms of

anomaly correlation for seasonal rainfall amount and dry-spell frequency. The last row of the table

shows the correlation between the station-average quantities. Clearly, while near-optimal for the

station-average simulation, the simulations at the individual stations are much less successful, with

interannual correlations with the observed of r = 0.52 − 0.72 for rainfall amount, and reaching

only r = 0.11− 0.49 for dry-spell counts.

Table 2 also shows the results when driving the NHMM with 90-day low-pass filtered rainfall

amount. There is little impact on simulated rainfall amount, while dry-spell frequency is seriously

degraded. A similar degradation takes place even when rainfall frequency is used to drive the

NHMM. Despite the large sampling uncertainty in dry-spell counts, the implication is that the

number of dry spells is significantly impacted by year-to-year differences in weather details that

cannot be replicated stochastically by the NHMM. This may be associated with the short memory

of the geometric distribution implied by the first-order Markov model.

b. Crop yield simulations

Figure 5 shows the simulated station-averaged yields averaged over the 100 simulations. The

curves in Fig. 5 show the yield obtained using daily-unfiltered, or temporally-smoothed inputs
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to the NHMM. The results are summarized in Table 3 in terms of anomaly correlation, mean

bias error and RMSE. For comparison, the bottom two rows of Table 3 show the results obtained

(a) without any downscaling, and (b) with a simple downscaling using local bias correction. In

approach (a) we simply use the 10-station average of the observed daily rainfall to drive the crop

model at each station. In (b) we use a local bias correction of the regional average observed daily

rainfall, according to each station’s cumulative distribution function (Ines and Hansen 2006).

Interannual variability of regional yields is well simulated by the NHMM-crop model combi-

nation when daily station-average rainfall is used as input to the NHMM (r = 0.94), while the

variance is underestimated by about 13%. In particular the NHMM performs considerably better

than the case of (a) no-downscaling, or (b) local bias correction, in terms of anomaly correlation,

mean bias error, and RMSE. The two simple schemes perform comparably, but with the mean bias

much reduced in (b). However even the latter produced crop yields with a considerable amount of

bias in this case.

The simulation of regional yield is scarcely degraded, in terms of correlation and RMSE, when

the NHMM input time series is low-pass filtered at 10 days or 30 days, with a slight degradation

using a 90-day low-pass filtered input (r = 0.85). However, the yield variance is underestimated by

35–40% when the low-pass filtered inputs are used. This loss of yield variance is inevitable because

21



the stochastic high-frequency rainfall variability, generated by the NHMM, becomes averaged out

in the ensemble mean. This contrasts with the unfiltered daily input case, in which the single

observed daily weather sequence is prescribed to be the input in all realizations.

The right-hand columns in Table 2 show the yield correlations at the individual stations, for

daily and 90-day low-pass filtered inputs to the NHMM. It is notable that the yield correlation

values almost reach those of rainfall amount, and are considerably higher than those of 10-day dry

spell frequency.

The insensitivity of the yield simulations to temporally smoothing the regional-rainfall input

series is striking. It suggests that crop yield is not sensitive to the sequence of daily weather

particular to each year but, rather, that this can be represented stochastically, as a function of a

90-day smoothed input. It also suggests that the latter contains most of the predictive value, as far

as yield is concerned. Figure 6 contrasts the years with low vs. high simulated yields, in terms of

the 90-day low-pass filtered input series, using a 1-standard deviation selection criterion. A very

clear distinction in rainfall seasonality emerges between the two sets of years: low-yield years are

characterized by anomalously low regional-average rainfall during the first 90 days of the season

(March–May), while high-yield years tend to have above-average regional rainfall during May–

August. The largest difference between the two sets of years occurs around May. Both high- and
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low-yield years tend to have above-average regional rainfall in July–August.

We have also driven the NHMM with monthly and seasonal (184-day) totals of rainfall, pre-

scribing the monthly (or seasonal) value on each day of the respective month (or season) as input

to the NHMM, again using standardized values. Using monthly totals, we obtain an anomaly cor-

relation of 0.87, which is comparable to the 90-day low-pass value. Using (184-day) seasonal

rainfall totals, the respective correlation is only 0.57. However, recall that this value is equal to the

correlation between the seasonal rainfall totals themselves and the baseline yields reported in Sect.

2b.

Consistently, we find that seasonal rainfall totals are almost perfectly correlated (r = 0.97)

with yield simulated from seasonal rainfall total via the NHMM/crop model. A scatter plot of this

relationship (not shown) reveals a near-linear dependence, within the range of observed rainfall

totals, with a slight flattening out for the highest seasonal totals. The modest correlation of r = 0.57

between rainfall totals and baseline yields can thus be attributed almost entirely to the omission

of sub-seasonal time-scale rainfall variability, as opposed to any non-linearity in the relationship.

CERES-Maize uses two linear water stress factors that are functions of the ratio of water-supplying

ability of the soil and root system, and evaporative demand (Vaux and Pruitt 1983). It does not

capture the direct effects of waterlogging on the root system, but will still give declining simulated
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yields at high rainfall amounts due to the reduced solar irradiance under very rainy conditions.

5. Interpretation of the HMM states

Beyond its ability to generate daily sequences of local rainfall, conditioned on large-scale rainfall,

the HMM can provide potential insight into the rainfall process, through inspection of the hidden

states and their chronological sequence. These rainfall states provide a diagnostic of large-scale

weather conditions across the region on a daily basis.

a. The estimated state sequence

Once the parameters of the HMM have been determined from the rainfall observations, the most-

probable daily sequence of the six states can be estimated using the Viterbi algorithm (e.g., Rabiner

1989). This allows an interpretation of the 76-year rainfall record in terms of these states, by

assigning each day to the state that was most probable on that day. The sequence is plotted in

Fig. 7, from which the relative frequencies of the six states can be simply counted; they are 6.1%,

8.2%, 10.1%, 12.0%, 3.5%, and 24.5% respectively.

The state sequence exhibits strong seasonality, with the dry state (no. 6) dominating during
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March–May, and states 3 and 4 dominating in June–August; state 4 is wet, and state 3 is fairly

wet in the south. The wettest state (no. 5) occurs on only 3.5% of days, with a slight preference

for the spring. States 1 and 2 exhibit little seasonal change in occurrence. States 1, 2 and 5 are

highly transient, consistent with the low persistence seen in Table 1, while states 3, 4 and 6 exhibit

persistent spells. The average seasonality, is plotted in Fig. 8, and suggests a description of the

average seasonal evolution in terms of the rainfall states. Fig. 7 indicates that the onset of the rainy

season is quite abrupt – near the beginning of June – but that there is also a substantial amount

of within-season and year-to-year variability. Thus the dry state 6 can occur even in the peak of

summer.

Since low- and high-yield years exhibit distinctly different rainfall seasonality (Fig. 6), we

examine this contrast in terms of state frequency. Figure 9 shows the seasonal cycle of state fre-

quency, averaging over each of these two sets of years. There is a clear distinction in the frequency

of states 4 (wet) and 6 (dry) between days 80 and 100 (mid-May to mid-June), with much higher

(lower) prevalence of the dry (wet) state in the low-yield years. Thus, the seasonal summer-rainfall

onset is delayed in low-yield years.
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b. Interannual variability

The interannual variability in state frequency is plotted in Fig. 10. The prevalence of the two

dominant states 6 (dry, spring) and 4 (wet, summer) tends to vary inversely, indicating interannual

differences in the length of the summer rainfall season or the within-season intermittency of these

states.

An inter-decadal trend toward dryer conditions in also visible, since the 1950s, again mostly in

states 4 and 6. There are also trends in early part of the record, with state 2 much more frequent,

and state 5 almost absent prior to about 1940. However, it is not clear if this difference in character

in the pre-1940 record is real since the record contains a large amount of missing data at several

stations, which were filled using a univariate weather generator, as described in Sect. 2. This may

have serious implications for the spatial rainfall patterns during the pre-1944 period.

c. Synoptic conditions

To determine the physical significance of the rainfall states, composites of atmospheric circulation

variables from NCEP-NCAR reanalysis data (1948–98) are plotted for each state, computed by

averaging over the days assigned to each state. Figure 11 shows composites of 850-hPa winds and
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500-hPa isobaric vertical velocity, constructed from unfiltered daily data, with the March–August

mean subtracted. The vertical motion composite anomalies are similar to composites of the full

fields, without the seasonal mean subtracted, while the wind anomalies are superposed on a strong

mean subtropical anticyclonic circulation over the Gulf of Mexico and western subtropical At-

lantic. Note that ascending motion is negative in isobaric coordinates (“omega”). All the anomaly

composites exhibit synoptic wave patterns in middle latitudes. These waves dominate the intermit-

tent states with the lowest persistence (states 1, 2 and 5). The strongly preferred transition from

state 1 to 6 (Table 1) can be interpreted as an eastward displacement of a ridge from the central to

the eastern U. S., while the preferred transitions of states 2, 4 and 5 to state 1 reflect the eastward

progression of a trough over the eastern U. S. into the Atlantic.

The vertical motion anomaly fields show large consistency with the rainfall; anomalous descent

extends over the SE United States during the dry state 6, while ascent anomalies dominate the

wet states 3 and 4. The extra-tropical wave patterns are characterized by large meridional wind

anomalies, with southerly anomalies tending to accompany anomalous ascent, and vice versa.

Anomalous easterlies predominate in the subtropics of the wet summer states 3 and 4, extending

from the Atlantic, indicative of a monsoonal circulation with an intensified subtropical anticyclone

to the east. The dry state 6 shows subtropical wind anomalies of the opposite sense, so that there
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is an effective seasonal reversal of the anomalous winds. This is also seen at upper levels (not

shown). The abruptness of “onset” (Fig. 7) of the summer rainy season, together with the seasonal

reversal of low-level wind anomalies (cf. Zhou and Lau 1997) indicate a monsoon-like climate

over North Florida/South Georgia during summer, consistent with Mechoso et al. (2005).

6. Summary and Conclusions

We have used a nonhomogeneous hidden Markov model (NHMM) in conjunction with a crop

model to investigate spatial and temporal disaggregation of seasonal rainfall for simulating maize

yields over the southeastern U.S. during the March–August half-year. The observed station-

average rainfall was used as the single driver of the NHMM, in order to investigate the NHMM’s

ability to downscale under ideal conditions. The downscaled rainfall simulations were then used

to drive a crop model, in order to evaluate the quality of the NHMM’s rainfall simulations in terms

of crop yields.

When the daily station-average rainfall amount was used to drive the NHMM, the simulations

were able to recover the interannual variability of station-average rainfall amount almost perfectly

(r = 0.97), providing a regional-average consistency check on the NHMM’s performance. Station-

average rainfall frequency and mean daily intensity were less-well captured, however. Interannual
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variability of rainfall amounts at the individual stations were also less-well reproduced, with cor-

relations ranging from 0.52 to 0.72, with an average of 0.60. This provides a measure of the

“downscalability” of regional-scale rainfall to the point scale. The difference between the correla-

tion value obtained for station-average rainfall (r = 0.97) and the mean of the individual station

correlations (r = 0.60) is consistent with the theoretical analysis of Moron et al. (2006) (their

Fig. 5), and would imply an external variance ratio of about 35%, suggesting that the reduction in

rainfall correlations at the station scale is due to unpredictable station-scale noise.

Year-to-year differences in 10-day dry-spell counts were found to be relatively poorly simulated

by the NHMM (r = 0.68 for the regional average), largely because of the sampling uncertainty

inherent in the number of 10-day dry spells in any 184-day period (ranging from 1 to 9 in the

observed record).

When the input timeseries was low-passed filtered at 90 days, we found no impact on the

simulated seasonal rainfall totals. Thus subseasonal rainfall anomalies are simply integrated out in

the seasonal total. The story is different for 10-day dry spells, where the 90-day low-pass filtered

input lead to very poor simulation of dry-spell counts. This suggests that year-to-year details of

weather time-scale variability play an important role in determining the number of simulated dry

spells, i.e. interannual differences in the latter cannot simply be represented by the geometric
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distribution given by the first-order markov chain of the NHMM. Since high-frequency weather

variability is unlikely to be predictable at the seasonal scale, this result is further evidence that

dry-spell counts are inherently unpredictable. Weather indices based on them should be used with

caution.

One of the goals of this study was to assess the impact of subseasonal rainfall characteristics

on crop yield simulations. The work extends previous single-site studies, such as Hansen and

Ines (2005), to a network of sites. We used a “perfect model” approach, by comparing against

the yield simulated by the crop model when driven by the observed daily rainfall itself. The

station-average (i.e. regional) yield of the NHMM-crop model combination was found to be very

well simulated, when the NHMM is driven by daily data (r = 0.93). NHMM-derived yields

at the individual stations were found to exhibit interannual correlations of the order of those of

NHMM’s seasonal rainfall amount, i.e. both reflecting errors in the spatial disaggregation. The

results of Moron et al. (2006) suggest that this error source reflects station-scale variations—largely

in rainfall intensity—that are inherently unpredictable at the seasonal scale. Thus, not surprisingly,

regional-average yield predictions derived from GCM seasonal forecasts (using an NHMM/crop

model, or otherwise) are likely to be more accurate than those made at individual locations.

At the station-aggregate level, the NHMM was found to lead to more accurate crop-yield sim-
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ulations than those obtained without downscaling, or with local bias correction of daily rainfall.

Remarkably, the NHMM-derived yield simulations were found to be scarcely degraded when

the input series to the NHMM was lowpass filtered, even at 90 days. In particular, the anomaly

correlation of simulated yield was found to be much higher than that of 10-day dry-spell counts,

because of the temporal integration inherent in the crop model. A substantial degree of season-

ality remains in 90-day low-pass filtered regional-rainfall, which has a large impact on simulated

yield. In a linear regression sense (i.e. from the squared correlation values) 32% of simulated

station-averaged yield variability were attributable to seasonal rainfall totals (Fig. 4), and an addi-

tional 40% to interannual differences in seasonality retained in the 90-day lowpass filtered rainfall

variability (Table 2).

The results of this study demonstrate that regional maize yields over the southeastern U.S.

could, in principle, be simulated successfully from 90-day seasonal time-scale regional precipita-

tion alone, provided low-pass filtered daily series are used, rather than 3-month averages. These

are the time and space scales on which seasonal climate forecasts have been demonstrated to con-

tain skill over certain regions and seasons (Goddard et al. 2006; Goddard and Mason 2003). Thus,

there are good reasons why crop yields should be predictable from these forecasts, as is proving to

be the case in several recent studies, e.g. Challinor et al. (2005).
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The NHMM without atmospheric predictors, i.e. a homogeneous HMM, was shown to yield

an informative spatio-temporal diagnostic of the observed rainfall record, in terms of sub-seasonal,

seasonal, interannual and longer-term variability of six discrete rainfall states. These states were

shown to be associated with distinct atmospheric circulation anomalies indicative of a monsoon-

like climate over North Florida/South Georgia during summer, with two wet monsoonal states, a

dry state, and three transient synoptic wave patterns, and an abrupt transition to a prevalence of

the wet states near the beginning of June. Delayed monsoon onset was found to characterize low

simulated-yield years with a much higher prevalence of the dry state between mid-May to mid-

June. A gradual long-term drying trend was found to be expressed as an increased prevalence of

the dry state relative to the monsoonal wet state (no. 4).
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Figure 1. Rainfall station locations. Circle radius denotes (a) the March 1 – August 31
climatological daily rainfall probability 1923–1998, and (b) the corresponding rainfall amount.
The stations are: (1) Tifton (31.5N, 83.5W), (2) Gainsville (30.4N, 82.6W), (3) Apalachicola

(29.7N, 85.0W), (4) Chipley (30.8N, 85.5W), (5) Jacksonville Beach (30.3N, 81.4W), (6) Ocala
(29.1N, 82.1W), (7) Brunswick (31.2N, 81.5W), (8) Camilla (31.2N, 84.2W), (9) Dublin (32.6N,

82.9W), (10) Thomasville (30.9N, 83.9W).
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wet-day amount (rainfall intensity) (mm/day) at each station, computed using pentad block

means.
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Figure 3. HMM rainfall parameters. (a)–(c) and (h)–(j): occurrence probabilities (circle radius).
(d)–(f) and (k)–(m): mean wet-day amounts of the mixed exponential.
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Figure 4. Interannual variability of NHMM-simulated seasonal rainfall amount(top), frequency
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mean bias error (MBE).
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Figure 8. The mean seasonal cycle of HMM state occurrence, computed from pentad means
(days/pentad).
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(a) Low−yield years (12): State−occurrence frequency

 

 
State 1
State 2
State 3
State 4
State 5
State 6

0 20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Day (Mar 1 − Aug 27)

St
at

e 
fre

qu
en

cy
 (d

ay
s/

pe
nt

ad
)

(b) High−yield years (13): State−occurrence frequency
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Figure 9. The mean seasonal cycle of HMM state occurrence, computed from (a) 12 low-yield
and (b) 13 high yield-years (days/pentad). Details as in Figs. 6 and 8.
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Figure 10. Interannual variability of state frequency.
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Figure 11. Anomaly composites with respect to the March–August climatological mean, over the
days assigned to each state. Arrows show 850-hPa winds, with contours of 500-hPa omega

vertical velocity. Contour interval is 1 Pa/s, with negative contours dashed (i.e. regions of ascent).
Arrow scale is given below each panel (m/s).

52



List of Tables

1 Transition probabilities between HMM hidden states. . . . . . . . . . . . . . . . . 54

2 Correlations between simulated and observed seasonal rainfall amount, 10-day

dry-spell frequency, and crop yield; shown are NHMM simulations with daily

regional-rainfall input, and 90-day low-pass filtered input. Note that Avg* in last

row is the correlation between station-averaged quantities. . . . . . . . . . . . . . 55

3 Performance of yield simulations using NHMM downscaling under varying de-

grees of temporal smoothing of NHMM-input, i.e. daily, 10-day, 30-day, and 90-

day lowpass filtering. Bottom two rows show crop yields derived from observed

(unfiltered) daily rainfall with no downscaling, and with simple local bias correc-

tion. See text for details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

53



TABLE 1. Transition probabilities between HMM hidden states.

to state
1 2 3 4 5 6

1 0.12 0.18 0.16 0.05 0.00 0.48
from 2 0.20 0.36 0.06 0.19 0.11 0.08
state 3 0.00 0.11 0.60 0.18 0.01 0.09

4 0.23 0.01 0.10 0.60 0.05 0.01
5 0.34 0.00 0.01 0.12 0.34 0.18
6 0.00 0.19 0.04 0.02 0.01 0.74
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TABLE 2. Correlations between simulated and observed seasonal rainfall amount, 10-day
dry-spell frequency, and crop yield; shown are NHMM simulations with daily regional-rainfall
input, and 90-day low-pass filtered input. Note that Avg* in last row is the correlation between

station-averaged quantities.

Station rainfall dry spells crop yield
daily 90-day daily 90-day daily 90-day

1 0.63 0.62 0.34 0.27 0.70 0.51
2 0.68 0.75 0.47 0.1 0.63 0.62
3 0.62 0.66 0.36 0.29 0.43 0.18
4 0.55 0.56 0.24 0.26 0.44 0.57
5 0.52 0.50 0.34 0.17 0.62 0.37
6 0.56 0.53 0.11 0.15 0.55 0.48
7 0.72 0.71 0.4 0.15 0.61 0.61
8 0.60 0.66 0.35 0.19 0.56 0.55
9 0.60 0.52 0.22 0.092 0.66 0.51

10 0.56 0.58 0.49 0.13 0.76 0.68
Avg* 0.97 0.97 0.68 0.39 0.93 0.85
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TABLE 3. Performance of yield simulations using NHMM downscaling under varying degrees of
temporal smoothing of NHMM-input, i.e. daily, 10-day, 30-day, and 90-day lowpass filtering.
Bottom two rows show crop yields derived from observed (unfiltered) daily rainfall with no

downscaling, and with simple local bias correction. See text for details.

yield mean bias RMSE
correlation error (kg/ha) (kg/ha)

NHMM-daily 0.94 55.4 441.8
NHMM-10d 0.93 70.6 497.1
NHMM-30d 0.91 -171.7 545.5
NHMM-90d 0.85 -89.7 655.6

No downscaling 0.82 1279.0 1484.9
Local correction 0.80 -448.7 1367.8
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