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Abstract

The seasonal predictability of rainfall over a small rice-growing district of Java, 

Indonesia is investigated in terms of its daily characteristics during the September–

December monsoon-onset season. The seasonal statistics considered include rainfall 

frequency, mean daily intensity, median length of dry spells, as well as the onset date of 

the rainy season. General circulation model retrospective seasonal forecasts initialized 

on August 1 are downscaled to a set of 17 station-locations using a non-homogeneous 

hidden Markov model. Large ensembles of stochastic daily rainfall sequences are 

generated at each station, from which the seasonal statistics are calculated and 

compared against observations using deterministic and probabilistic skill metrics. The 

retrospective forecasts are shown to exhibit moderate skill in terms of rainfall frequency, 

seasonal rainfall total, and especially monsoon onset date. Some skill is also found for 

median dry-spell length, while mean wet-day persistence and daily rainfall intensity are 

not found to be predictable.
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1. Introduction

Seasonal climate forecasts are typically issued in terms of three-month averages of 

rainfall or temperature, as a compromise between maximizing the ratio of predictable 

climate signal to unpredictable weather noise, while still capturing seasonal evolution 

(e.g. Goddard et al., 2001). However, such seasonally-averaged forecasts are often of 

limited use to decision makers, where risk management in agriculture, for example, may 

require information on aspects such as the onset of the rainy season, or the probability 

of rainfall occurrence, long dry spells, or rainfall extremes within the growing season. In 

addition, the skillful spatial scale of current general circulation modal (GCM) seasonal 

predictions is of the order of several hundred kilometers (Gong et al., 2003), again much 

larger than may be required for effective climate risk management at the scale of a 

small administrative district. Downscaling is required, within the physical constraints of 

the regional climate system, and the limitations of available downscaling methodologies. 

Recent work suggests that in the tropics, rainfall frequency at the station scale is more 

seasonally predictable than the seasonal total of rainfall; this primarily due to the 

relatively higher spatial coherence of interannual anomalies of rainfall frequency 

compared to those of mean daily rainfall intensity (Moron et al., 2006, 2007). 

Probabilistic models of “weather within climate” with daily resolution based on stochastic 

weather generators, hidden Markov models, and K-nearest neighbors approaches have 

been used to express GCM-based seasonal forecasts in terms of ensembles of 

stochastic local daily weather sequences that can then, in principle, be used to drive 

models of crop growth and yield (Hansen and Ines 2005, Ines and Hansen and 2006, 
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Robertson et al. 2004, 2006, 2007).  The non-homogeneous hidden Markov model 

(NHMM) has proved to be a promising method for constructing multi-station weather 

generators (Hughes and Guttorp, 1994). Over northeast Brazil, Robertson et al. (2004) 

found that interannual variability in the frequency-of-occurrence of 10-day dry spells 

could be simulated reasonably, using an NHMM with GCM seasonal-mean large-scale 

precipitation as a predictor. Similar downscaling results were obtained over 

Queensland, Australia (Robertson et al. 2006). The NHMM has been applied to two 

other locations in Australia in downscaling studies (Charles et al., 2003, 2004).

In this paper, retrospective GCM seasonal precipitation forecasts are downscaled to a 

set rainfall stations over Indramayu, a small (2140 km2) flat coastal district of West Java, 

using an NHMM and their skill assessed under cross-validation. We focus on a set of 

weather statistics of potential relevance to agriculture, namely daily rainfall frequency, 

mean daily intensity on wet days, mean dry-spell lengths, wet-day persistence, and the 

monsoon onset date, in addition to the seasonal rainfall total. Deterministic and 

probabilistic measures of skill are quantified. 

Rainfall over Indonesia is governed by the austral-Asian (northwest) monsoon, whose 

onset progresses from northwest-to-southeast during the austral spring (Aldrian and 

Susanto, 2003). Many studies have shown that the El Niño - Southern Oscillation 

(ENSO) exerts its strongest influence on Indonesian rainfall, particularly during the 

September–December monsoon onset season (e.g., Hamada et al., 2002). The impact 

of ENSO then diminishes during the core of the rainy season in December–February 

(Haylock and McBride, 2001; Aldrian et al., 2005, 2007; Giannini et al., 2007), 

suggesting that the timing of monsoon onset may be potentially predictable. Moron et al. 
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(2008) have recently argued that much of the seasonal predictability in the September–

December total rainfall is associated with changes in monsoon onset date.

Indramayu, situated on the north coast of West Java, is an important rice-growing 

district contributing about one-quarter of Java's rice production. Farmers experience 

droughts and floods that cause significant losses in rice production. The date of onset of 

the rainy season is of particular importance, determining the suitable time for planting 

crops, while delayed onset during El Niño years (Hamada et al., 2002; Naylor et al., 

2002; Boer and Wahab, 2007) can lead to crop failure. “False rains,” in which isolated 

rainfall events occur around the expected onset date also present problems for farmers.

This paper is motivated by the needs of the Indonesian Bureau of Meteorology and 

Geophysics (BMG), which has been working with the agricultural office to develop 

climate forecasts that are specific to agriculture over Indramayu. The September–

December season is selected for its importance to agriculture as well as its relatively 

high seasonal predictability of rainfall. The paper is organized as follows. Section 2 

describes the rainfall data and GCM simulations, section 3 describes the hidden Markov 

model and statistical methods. The results are presented in section 4, with conclusions 

given in section 5.
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2.  Data

a) Observed rainfall data

Daily rainfall observations recorded at 17 station locations over Indramayu during the 

period 1979–2002, for the September–December (SOND) season were used in this 

study; these data were provided by BMG. Missing values (< 6% of station-days) were 

simply flagged for the NHMM. For the purposes of computing observed rainfall statistics 

against which to validate the forecasts, the missing values were filled using a simple 

stochastic weather generator (Wilks, 1999), considering the wet-to-wet and dry-to-wet 

day persistence and a gamma distribution for rainfall amounts on wet days. All 

parameters were computed separately for each station and calendar month; if a month 

is completely missing, this method simulates a climatological daily sequence for that 

month. The average number of wet days (defined here as receiving 0.1mm or more of 

rain) is 20–30 days, with mean intensities (i.e. the mean amount of rainfall on wet days) 

of about 2–4 mm/day. Their spatial distributions are rather uniform, as shown in Fig. 1.

An agronomical definition of monsoon onset (e.g., Sivakumar, 1988) is adopted based 

on local rainfall amounts. Onset is defined as the first wet day of the first 5-day 

sequence receiving at least 40 mm that is not followed by a dry 15-day sequence 

receiving less than 5 mm within the following 30 days from the onset date. The latter 

criterion helps to avoid false starts. Onset is computed from the 1st September.  

Changing the length and/or the amount of rainfall of the initial wet spell modifies the 

climatological mean onset date, but the impact on its interannual variability is found to 

be minimal.
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b) Seasonal climate forecast model

A set of retrospective seasonal forecasts from the ECHAM4.5 atmospheric GCM driven 

with constructed-analog predictions of sea surface temperature (SST) were initialized 

on August 1 of each year 1979–2002 (Li and Goddard,  2005). In this “two-tier” system, 

SST is predicted on a monthly basis from the previous month (here July) using the 

constructed analog approach (van den Dool, 1994). The ECHAM4.5 atmospheric GCM 

is then run at T42 horizontal resolution (approx. 2.8 degree grid) using the SST 

predictions at the lower ocean boundary, with the 24 ensemble members initialized from 

slightly differing initial conditions taken from long simulations with observed SSTs 

prescribed. There is no initialization of the atmosphere (or land surface conditions) 

through data assimilation. These retrospective forecasts were made at IRI and obtained 

through the IRI Data Library.

3. Methods

a) Non-homogeneous Hidden Markov model (NHMM)

The NHMM used here follows the approach of Hughes and Guttorp (1994) to model 

daily rainfall occurrence, while additionally modeling rainfall amounts; it is fully 

described in Robertson et al. (2004, 2006). In brief, the time sequence of daily rainfall 

measurements on a network of stations is assumed to be generated by a first-order 

Markov chain of a few discrete hidden (i.e. unobserved) rainfall “states.” For each state, 

the daily rainfall amount at each station is modeled as a finite mixture of components, 

consisting of a delta function at zero amount to model dry days, and a combination of 
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two exponentials to describe rainfall amounts on days with non-zero rainfall. The state-

transition matrix is treated as a (logistic) function of a multivariate predictor input time 

series obtained from the GCM retrospective forecasts. Missing data is treated explicitly, 

with parameter estimates derived from the days that are present (Kirshner, 2005).

b) Downscaling experimental design and cross-validation 

The GCM retrospective forecasts are downscaled using the NHMM to obtain a large 

ensemble of stochastic daily rainfall sequences at each of the 17 stations, for the 

September 1 – December 31 period, 1979–2002. Monthly GCM precipitation fields were 

obtained for the months August–January over a regional window (80E–180E, 20S–15N) 

and standardized at each gridpoint by subtracting the mean and dividing by the 

standard deviation. The resulting anomalies were then weighted spatially using a 

Gaussian (σx=60o, σy=15o) to emphasize gridpoints over Indonesia, and then 

interpolated linearly to daily values, selecting the September 1 – December 31 period.

The NHMM was trained using the 24-member GCM ensemble mean precipitation under 

8-fold cross-validation, omitting 3 consecutive years at a time. A principal components 

analysis (PCA) of the daily-interpolated GCM ensemble-mean precipitation fields was 

used to define the inputs to the NHMM, retaining the leading 3 PCs (92.4% variance). 

The correlations of the (seasonal averaged) PCs with the (seasonal and station 

averaged) station rainfall are 0.59, –0.49, and 0.66 respectively, while the respective 

correlations with the Nino3.4 index are –0.79, 0.69, and –0.85. For each fold of the 

cross-validation, the PCs were recomputed on the training subset of 21 years. 
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To make the rainfall simulations, we proceed as follows for each of the 8 folds of the 

cross-validation. For each of the 24 ensemble members, the (linearly interpolated) daily 

GCM precipitation fields for the 3 left-out years were projected onto the leading 3 EOFs 

computed from the respective 21-year training period. The resulting 24 timeseries (one 

per GCM ensemble member) were then used in conjunction with the NHMM trained on 

the 21-year training period to make 3 NHMM simulations, yielding a total of 72 

simulated daily rainfall sequences for each SOND season. Note that the individual GCM 

ensemble members were used for simulation, rather than the GCM’s ensemble mean, 

in order to retain the distribution within the GCM ensemble. However, skill levels were 

found to decrease if the individual ensemble members were used in the NHMM training 

step, in place of the ensemble mean. 

4. Results

a) NHMM training

The choice of the appropriate number of hidden states k in the NHMM was guided by 

computing the log-likelihood of models with different choices of k under cross-validation 

(Fig. 2). As is typical, the out-of-sample log-likelihood increases sharply with k initially, 

and then levels off, with diminishing returns for high values. We chose k=4; the 

downscaling results were checked for k=3–6 and found be very similar. In all cases the 

NHMM was initialized 30 times from random seeds, selecting the solution with the 

highest (in-sample) log-likelihood. Note that the log-likelihood is negative because the 

likelihood—which is the probability of the observed rainfall data given the model—is less 

than unity; the model fit is not perfect even for large k because (a) the NHMM is a 
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simple representation of the rainfall process and its relationship with large-scale GCM 

monthly precipitation, (b) the GCM forecasts contain errors, and (c) the parameters 

estimated in the NHMM training are maximum likelihood estimates.

b) NHMM interpretation

Maps of rainfall properties associated with each of the states are plotted in Fig. 3, with 

the estimated state sequence in time shown in Fig. 4. The four rainfall states describe 

daily rainfall conditions ranging from dry (state 1) to wet (state 4), in terms of rainfall 

probability at each station (Fig. 3a–d), and the rainfall distribution on wet days, with the 

latter plotted here in terms of mean rainfall intensity (Fig. 3e–h), calculated from each 

state’s rainfall-distribution parameters. Rainfall probabilities are stratified rather 

monotonically by the NHMM state, with much smaller differences between stations for a 

given state. Mean rainfall intensities vary less abruptly, with larger inter-station 

differences, especially for the dry state where there are few wet days over which to 

estimate the rainfall distribution parameters. 

The temporal evolution of rainfall in the dataset can be described by estimating the   

most-likely sequence of the four NHMM states. This is performed using the Viterbi 

algorithm (Forney, 1978), which uses the NHMM parameters (estimated here for the 

whole dataset without cross-validation) together with the rainfall data. Figure 4 provides 

a graphic illustration of the rainfall variability at the district level, in terms of its 

seasonality, sub-seasonal variability, as well as interannual variability. The driest state 

predominates during September, with spells of the wetter states becoming more 

prevalent in November–December.  The stochastic nature of the model is clear, with a 
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considerable variability of the sequences from year to year, and within each season. 

The monsoon onset was clearly substantially delayed during the El Niño events of 1982, 

1987, 1994 and 1997.

c) Forecast ensembles

The downscaling experiment performed in this study yields ensembles of retrospective 

forecasts, consisting of stochastic daily sequences of rainfall at the 17 rainfall station 

locations. In order to investigate the characteristics of these daily sequences, we focus 

on six seasonal summary statistics: seasonal rainfall total, rainfall frequency (days ≥

0.1mm), the mean daily intensity on wet days, the average length of dry spells, the 

mean wet-day persistence, and the monsoon onset date. The distribution of dry-spell 

lengths is skewed to the right because of the seasonal transition from the dry to the wet 

season, and the mean dry-spell length is biased by the dry season. We thus choose the 

median dry-spell length that is more indicative of post-onset conditions, and then take 

its natural logarithm to further reduce the skew of the distribution. Each summary 

statistic is computed at each of the 17 station locations. 

To assess model performance at the Indramayu district level, we average each 

summary statistic over the 17 stations using a standardized anomaly index (SAI; Katz 

and Glantz, 1986). The SAI is computed by standardizing the interannual time series at 

each station (subtracting the mean and dividing by the standard deviation) and then 

averaging the standardized anomalies spatially across the stations to form an index; it 

thus gives each station equal weight.
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d) Mean biases

Figure 5 shows the climatological (i.e. marginal) distributions of the SAI of each of the 

six rainfall statistics computed from the observations (panel a; 24 years) and simulations 

(panel b; 72 simulations x 24 years); note that the observed distribution is purely 

interannual, whereas the simulated distribution contains both interannual and intra-

ensemble variability. In order to identify biases in the simulations, the SAI was 

computed using the station means and standard deviations computed from the 

observations in both panels. Table 1 gives the observed and simulation means in 

physical units, averaged simply across stations, together with the percentage biases in 

the mean and standard deviation. The standard deviation in Table 1 was computed at 

each station and ensemble member individually, and then averaged.

Mean biases for seasonal total, rainfall frequency and mean intensity are negligible 

(about 1% or less), and about 10% for median dry-spell length and wet-day. Onset 

dates are systematically too early by about one week on average.  The inter-quartile 

ranges (IQR), given by the boxes in Fig. 5, are generally similar between the observed 

and simulated ensembles, while the tails of the simulated distributions are longer. The 

forecast distributions are generally less skewed than their observed counterparts, with 

the median more centrally located in the IQR. 

The bias in the interannual standard deviation in the individual station simulations is 

given in Table 1, averaged across members and stations. It is very small for seasonal 

total, rainfall frequency and onset date (< 2%). Thus, the simulations generally do not 

suffer from insufficient interannual variability that is often encountered in simple 
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stochastic weather generators (Katz and Parlange, 1998). However, the interannual 

standard deviation is somewhat underestimated for mean intensity and wet-day 

persistence (10–15%), and overestimated for median dry-spell length (19%). 

Ensemble forecasts can be expressed most simply in terms of the ensemble mean, 

together with estimates of its uncertainty. Figure 6 shows quantile-quantile (Q-Q) plots 

of the interannual distributions of observed vs. the forecast ensemble mean, again using 

the SAI without any bias correction. The 45o straight line would be obtained, 

approximately, if the two samples (forecast mean and observed data) came from the 

same distribution. The forecast distributions of seasonal total and rainfall frequency are 

quite accurate, while late onset-date forecasts tend to be too weak. The forecasts 

distributions of mean intensity and wet-day persistence ensemble mean are both much 

too narrow and thus severely lack forecast resolution.

e) Spatial coherence

Having assessed overall simulation biases, and before turning to measures of forecast 

skill, we examine the spatial coherence of seasonal anomalies between stations. The 

amplitude of the SAI for a particular year depends on the size of the correlations 

between stations, and thus its variance gives a measure of spatial coherence of the field  

(Moron et al., 2006). For relatively homogeneous regions such as Indramayu, the 

spatial coherence provides a measure of potential predictability at the station scale 

(Moron et al. 2006). The observed inter-quartile ranges of the SAI (Fig. 5a) are largest 

for seasonal total, rainfall frequency, and monsoon onset date, while they are smallest 

for rainfall intensity and dry-spell length, suggesting higher predictability of the former 
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quantities compared to the latter ones. Values of the variance of the SAI (VSAI) and the 

estimated number of spatial degrees of freedom (DOF; Moron et al. 2006) are given in

Table 2. As seen in previous studies of tropical rainfall (Moron et al. 2006, 2007), spatial 

coherence of interannual anomalies in the station data is largest (high VSAI and low 

DOF) for rainfall frequency, closely followed by seasonal total, with mean intensity being 

much less coherent. Of the other statistics, onset date also exhibits high coherence, as 

found recently over Indonesia in the study of Moron et al. (2008). The spatial coherence 

of the NHMM simulations generally follows the observed behavior, with a slight 

overestimation of the coherence for seasonal total and rainfall frequency. It is notable 

that the median dry-spell length is much more coherent in the simulations than in the 

observed rainfall data.

f) Ensemble mean skill

Prior to assessing the skill of the forecasts, a simple bias correction was applied at each 

station to remove the biases in the mean and standard deviation. 

Skill is firstly assessed in terms of the forecast ensemble mean.  Figure 7 shows 

forecast reliability and resolution in terms of the SAI of the verification given the forecast 

[E(obs | fcst)], plotted against the forecast SAI. A bin-width of 0.2 was used to assign 

the forecasts to categories, for which the observed outcomes were averaged. Figure 7 

thus shows the success of the forecasts binned into categories and is plotted in the 

same format as the Q-Q plots in Fig. 6. In all panels the points lie fairly close to the 

diagonal, indicating reasonably reliable forecasts; i.e. the (bias corrected) forecasts for 

each bin indicated by a cross tend to be correct on average. On the other hand, there 
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are large differences in forecast resolution between the six rainfall-statistics, consistent 

with Q-Q plots in Fig. 6. Rainfall frequency and seasonal total exhibit the most 

dispersion of the points along the diagonal, indicating that forecasts across the 

observed range of amplitude are indeed issued. In contrast, the mean intensity and wet-

day persistence forecasts are clustered about the climatological mean indicating that 

the forecasts have no resolution. The dry-spell length forecasts also show too little 

forecast resolution. Forecast skill is a combination of the reliability and resolution of the 

forecasts. Values of the Pearson anomaly correlation and p-value, given in each panel 

of Fig. 7, are generally consistent with these graphs. Thus, the highest anomaly 

correlation skills are achieved for rainfall frequency, followed by monsoon onset and 

seasonal total. Median dry-spell length is intermediary, while the forecasts of mean 

intensity and mean wet-day persistence are not significantly correlated with the 

verifications.  

Figures 8 shows anomaly correlation skills at the individual stations. The stratification 

between the different rainfall statistics is quite clear in these plots.  Inter-station 

differences may reflect data quality at each station, sampling issues, as well as physical 

inhomogeneities—differences in skill across the small district of Indramayu do not 

appear systematic, although skill values at inland stations appear to be generally slightly 

lower.

g) Forecast spread

Risk management applications require estimates of forecast uncertainty, for which 

information contained in the ensemble spread may be applicable (e.g. Palmer, 2002). 
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Figure 9 shows the observed SAI time series for each rainfall statistic, together with 

box-plots depicting the forecast ensembles. The larger interannual variance of the SAI 

for seasonal total, rainfall frequency and onset-date is immediately apparent, indicative 

of the potential predictability in these three statistics. The skewness of the simulations of 

median dry-spell length is also apparent, which may account for the overestimation of 

its variance in the simulations (Table 2). 

Provided an interannual signal is present in the observed SAI, a skillful forecast 

ensemble should bracket the observed value, such that the probability of the 

observation given the forecast is as large as possible (Murphy and Winkler, 1987). 

There is visible evidence that the forecasts of seasonal total, rainfall frequency and 

onset-date contain skill. Various forecast verification metrics have been developed to 

quantify the skill of probabilistic forecasts (e.g. Jolliffe and Stephenson, 2003). The 

continuous ranked probability score (CRPS; Hersbach, 2000), for example, is a squared 

error metric that measures the distance between the cumulative distribution function 

(CDF) of the forecast and the verifying observation; the latter “CDF” takes the form of a 

step function at the value of the observation. Expressed with respect to a baseline given 

by the CRPS of the climatological forecast distribution, the median CRPS scores 

(across years) of the six SAI quantities are –2.48, 7.74, –20.24, –29.58, –29.20 and 

6.40% respectively. Negative values denote a forecast worse than climatology, with a 

perfect forecast given by +100%. Only rainfall frequency and onset date yield skill better 

than climatology. The CRPS scores were also computed at individual stations. At the 

station level, the downscaled forecasts were only found to exhibit CRPS scores values 

better than climatology for onset date; these are plotted Fig. 10. 
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To be well calibrated, the spread of the forecast distributions should be such that the 

IQR “prediction interval” boxes in Fig. 9 bracket the observation in 50% of years; values 

below indicate too little spread (boxes too narrow), and values above 50% imply too 

much spread in the forecast distribution (boxes to wide). For the six SAI quantities in 

Fig. 9, the percentage of observed years within the simulated IQR (i.e. the capture 

rates) are 58, 62, 37, 71, 46 and 46% respectively. Thus in most cases the forecasts 

are reasonably well calibrated; there is too little spread for rainfall intensity and too 

much for dry-spell length.

h) Conditional exceedance probabilities

To visualize the reliability of the forecasts, the individual ensemble members can be 

treated as estimates of quantiles of the forecast distribution (Mason et al., 2007). For 

example, given only one ensemble member, there should be a 50% probability that the 

observed value exceeds the forecast, regardless of value being forecast. Thus, a graph 

of this “conditional exceedance probability” (CEP) against the forecast rainfall should be 

a horizontal line with CEP=0.5.  Figure 11 shows the CEP curves for each of the 72 

ensemble members, calculated across all years using generalized linear regression 

(Mason et al., 2007); they are ranked from driest to wettest, from the top to bottom in 

each panel. 

The CEP curves for mean intensity, median dry spell length and wet-day persistence all 

lie close to the climatological probability of exceedance (thin line), showing that these 

forecasts do not deviate much from climatology; this is consistent with the large 

negative CPRS scores for these rainfall statistics. On the other hand, the CEP curves 
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for seasonal total, rainfall frequency and onset date slope less, extend over a larger 

range of SAI and are more evenly spaced. There is still a general tendency for the 

slopes to be negative, except for onset date, indicating that the forecasts tend to be 

over confident. However, the distributions are noisy, indicating considerable sampling 

variability associated with the short 24-year time series.

i) A real-time forecast

Figure 12 presents an example of a forecast distribution made for the 2007 SOND 

season, expressed in terms of probability of exceedance. The figure shows cumulative 

distribution functions (CDFs), smoothed using a kernel density estimator, for the 

historical observed (solid) and 1979–02 retrospective forecast (dotted) climatological 

distributions, and the 2007 forecast distribution (dashed).

The observed and simulated climatological distributions are similar in all cases 

indicating no serious biases in the retrospective forecasts over the 1979–02 period, 

recalling that the bias in the mean and variance has been removed from each SAI 

(Sect. 4f). The 2007 forecast exhibits a dry tendency, with lower probabilities of 

exceeding a given threshold of seasonal amount, rainfall frequency, and wet-day 

persistence, and higher probabilities of exceeding a given threshold of median dry-spell 

length and onset date. The exceedance probabilities of the forecast for rainfall intensity 

and wet-spell length also deviate from climatology, despite the lack of skill in these 

quantities.
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5. Conclusions

a) Summary

We have demonstrated the methodology and evaluated the skill of downscaled rainfall 

forecasts over Indramayu district, West Java, during the September–December 

monsoon onset season, using a combined GCM-NHMM approach. The quality of the 

cross-validated retrospective forecasts was assessed for six rainfall summary statistics 

computed from 72-member daily-rainfall-sequence simulations: seasonal rainfall total, 

daily rainfall frequency, mean daily intensity, median length of dry spells, wet-day 

persistence, and monsoon onset date.

Mean biases of the rainfall simulations (Table 1; Fig. 5) are under 1% for seasonal total, 

rainfall frequency and mean intensity. The simulations overestimate the lengths of dry 

spells and underestimate the lengths of wet spell by about 8%, and simulated onset 

date is premature by about a week. Interannual standard deviations are accurate (within 

2%) for seasonal total, rainfall frequency and onset date; they are underestimated for 

rainfall intensity (14%) and wet-day persistence (10%), and overestimated for median 

dry-spell length (19%).

Various measures of skill of the forecasts were considered. In terms of anomaly 

correlation of the ensemble mean, the standardized anomaly index (SAI) over the 

stations reaches 0.71 for rainfall frequency, 0.61 for onset date, 0.58 for seasonal total 

and 0.50 for median dry spell length.  Neither rainfall intensity nor wet-day persistence 

exhibit skill. The ensemble mean forecasts exhibit encouraging reliability for all 

quantities (i.e. the expectation of the observations conditioned on the forecasts is 
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accurate), but with good forecast resolution only for rainfall frequency, seasonal total 

and onset date (Fig. 7). At the station level (Figs. 8), anomaly correlations are most 

consistently high for onset date. 

Regarding the forecast distributions, the spread of the distribution is generally 

reasonable: somewhat too broad for seasonal total, rainfall frequency and (particularly) 

dry-length, and too narrow for wet-spell length, onset date and (markedly) rainfall 

intensity (Fig. 9). Probabilistic skill values using the continuous ranked probability skill 

(CRPS) score show better-than-climatology values only for SAI of onset date and 

rainfall frequency. At the station scale, only the monsoon onset date shows positive 

CRPS scores against a climatological benchmark (Fig. 10). Conditional exceedance 

probabilities of the individual ensemble members (CEPs; Fig. 11) indicate the highest 

reliability for onset date, followed by rainfall frequency and seasonal total. However, 

clear deficiencies are visible, with a general tendency toward overconfidence of the 

ensembles (i.e. negative CEP slopes) in all quantities except onset date. The CEP 

curves are noisy and the short length of the verification series (24 points) is a limiting 

factor. An example probabilistic forecast was made for 2007, expressed in terms of 

exceedance probabilities (Fig. 12).

b) Discussion

The goal of this paper has been to assess the suitability of the non-homogeneous 

hidden Markov model (NHMM) as a downscaling technique to obtain daily rainfall 

sequences conditioned on seasonal forecasts. Taken together, the set of forecast 

metrics examined here provide an overall picture of forecast quality.  
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Levels of skill can be differentiated according to the district-average versus individual 

stations, and anomaly correlation versus the CRPS probabilistic score. In terms of the 

anomaly correlation of ensemble-mean forecasts for district average (here SAI), results 

are consistent with our previous studies of seasonal predictability of tropical rainfall 

(Moron et al. 2006, 2007, 2008a,b; Robertson et al. 2006, 2007), with highest skill for 

rainfall frequency and lowest for mean rainfall intensity. Onset date skill predictability is 

consistent with the analysis of Moron et al. (2008c) who found seasonal predictability of 

seasonal total to be largely associated with onset date over Indonesia. The anomaly 

correlation skill seen at the district level is largely reproduced at the station level as well. 

Most striking, however, is the lack of CRPS skill except for rainfall frequency and onset 

date at the district level, and only onset date at the individual stations. The latter result 

was found robust to details of how the CPRS score was estimated and is encouraging 

for climate risk management applications where onset date is a critical factor in crop 

planting.

The cross-validated anomaly correlation skill for the SAI of seasonal total is comparable 

to raw correlations between the station average rainfall and the GCM principal 

component predictors. This is encouraging because the summary statistics of the 

simulations were computed a posteriori from the cross-validated NHMM daily rainfall 

sequences. While regression models built directly on seasonal statistics can be

expected to outperform the NHMM, the latter is motivated by the need for the daily 

sequences for crop modeling etc.

The generally low levels of bias in the simulations is encouraging, with accurate levels 

of interannual variance for the more skillful quantities, i.e. onset date, seasonal total and 
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rainfall frequency. However, the mean onset date of the simulations is premature by 

about 1 week. This is probably largely due to biases in the GCM predictors since use of 

reanalysis-based predictors was largely able to remove this bias (not shown). Further 

work is required to address this issue, before the GCM-NHMM simulated daily rainfall 

sequences could be used to drive crop models, for example. 
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Tables

Obs mean Mean bias Mean bias 
(%)

STD bias (%)

Seas Total 
(mm/d)

3.68 0.04 1.04 1.45

Frequency 0.21 0 -0.13 -0.31

Mean 
Intensity
(mm/d)

17.8 -0.15 -0.78 -14.06

Median Dry 
Spell (days)

2.89 0.26 10.35 19.01

Mean Wet 
Day 
Persistence 
Probability

0.39 -0.04 -9.06 -9.5

Onset Date
(days after 
9/1)

60.81 -8.3 -13.4 1.55

Table 1: Biases in the simulations, averaged over all 17 rainfall stations. The bias 

in the interannual standard deviation of the simulations (STD) is computed for 

each ensemble member separately, and then averaged. Onset dates are in days 

after September 1st. 
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VSAI-obs VSAI-sim DOF-obs DOF-sim

Amount 0.6 0.79 2.5 2

Frequency 0.61 0.93 2.5 1.4

Mean 
Intensity

0.25 0.12 6.3 15.1

Median Dry-
Spell Length

0.19 0.84 8.2 3.4

Mean Wet 
Day 
Persistence 
Probability

0.32 0.34 5.9 6.1

Onset Date 0.62 0.67 2.4 3.2

Table 2: Spatial coherence statistics for the observations and simulations. The 

variance of the standardized anomaly index (VSAI) and estimated number of 

degrees of freedom (DOF) are given (see text for details).
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Figure captions

Figure 1: Observed climatological mean station values of (a) rainfall probability, and (b) 

mean rainfall intensity (mm/d).

Figure 2: Cross-validated log-likelihood as a function of the number of NHMM states.

Figure 3: Rainfall probabilities (a-d) and mean intensities (e-h) associated with the 4-

state model. Intensities are in mm/day.

Figure 4: Estimated state sequence of 4-state model. Grey scale denotes the state. The 

states are ordered from driest (white) to wettest (black) as in Fig. 3.

Figure 5: Box plots of standardized anomaly index (SAI) of (a) observations, and (b) raw 

forecasts across all 24 years. The rainfall statistics are seasonal rainfall total (T), 

daily rainfall frequency (F), mean daily intensity (I), median length of dry spells (D), 

mean wet-day persistence (W), and monsoon onset date (O). Boxes denote the 

median and interquartile range (IQR). Whiskers extend 1.5 IQR from box ends, 

with outliers denoted "+". In panel (b) there are 72 simulations for each year. 

Figure 6: Quantile-quantile plots of the ensemble mean SAI of the forecasts against the 

observed values.

Figure 7: Reliability diagrams for the ensemble mean SAI of the forecasts.  The 24 

seasonal values of the ensemble mean forecast were binned into 10 classes of 

width 0.3σ, and the observed outcomes for each class averaged on the ordinate. 

The diagonal line gives the expected value for perfectly reliable forecasts.
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Figure 8: Correlation skills of hindcasts: (a) seasonal rainfall total; (b) rainfall frequency; 

(c) mean daily intensity; (d) median length of dry spells; (e) mean wet-day 

persistence; (f) monsoon onset date. Circle diameter is proportional to magnitude 

of the correlation. Negative correlations omitted.

Figure 9: Box plots of standardized anomaly index (SAI) of forecasts, together with 

observations (solid line). Boxes denote the interquartile range (IQR), about the 

median (circle with dot). Whiskers extend 1.5 IQR from box ends, with outliers 

denoted "o". The median CPRS scores of the six SAI quantities are –2.48, 7.74, –

20.24, –29.58, –29.20 and 6.40%.

Figure 10: Continuous ranked probability skill (CRPS) scores for monsoon onset date. 

Circle diameter is proportional to magnitude of the CRPS score (in %).

Figure 11: Conditional exceedance probabilities of SAI. Curves denote probability that 

the observed value in a particular year exceeds the predicted value for that year, 

for a given ensemble member. Thin continuous line denotes the exceedance 

probabilities of the observations.

Figure 12: Probability of exceedance for 2007 forecast of SAI. Key: solid–observations, 

dotted–hindcasts, dashed–2007 forecast.
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