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Abstract

We outline the familiar concept of a hierarchy of models for solving problems in climate

dynamics. General circulation models (GCMs) occupy a special position at the apex of this

hierarchy, and provide the main link between basic concepts—best captured by very simple, “toy”

models—and the incomplete and inaccurate observations of climate variability in space and time.

We illustrate this role of GCMs in addressing the problems of climate variability on three time

scales: intraseasonal, seasonal-to-interannual, and interdecadal. The problems involved require the

use of atmospheric, oceanic, and coupled ocean-atmosphere GCMs. We emphasize the role of

dynamical systems theory in communicating between the rungs of the modeling hierarchy—toy

models, intermediate ones, and GCMs—and between modeling results and observations.
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I. Introduction: the modeling hierarchy

A view of climate dynamics as a modern scientific discipline first emerged about 40 years

ago (Pfeffer, 1960). We understand it at this end of the century as studying the variability of the

atmosphere-ocean-cryosphere-biosphere-lithosphere system on time scales longer than the life span

of individual weather systems and shorter than the age of our planet. When defined in these broad

terms, the variability of the climate system is characterized by a power spectrum that has (i) a

“warm-colored” broad-band component, with power increasing from high to low frequencies, (ii) a

line component associated with purely periodic forcing, annual and diurnal, and (iii) a number of

broad peaks that might arise from less purely periodic forcing (e.g., orbital change or solar

variability), internal oscillations, or a combination of the two (Mitchell, 1976; Ghil and Childress,

1987, Ch. 11).

Understanding the climatic mechanism or mechanisms that give rise to a particular broad

peak or set of peaks represents a fundamental problem of climate dynamics. The regularities are of

interest in and of themselves, for the order they create in our sparse and inaccurate observations;

they also facilitate prediction for time intervals comparable to the periods associated with the given

regularity (Ghil and Childress, 1987, Sec. 12.6; Ghil and Jiang, 1998).

The climate system is highly complex, its main subsystems have very different characteristic

times, and the specific phenomena involved in each one of the climate problems defined in the

preceding paragraph are quite diverse. It is inconceivable, therefore, that a single model could

successfully be used to incorporate all the subsystems, capture all the phenomena, and solve all the

problems. Hence the concept of a hierarchy of climate models, from the simple to the complex, has

been developed about a quarter of a century ago (Schneider and Dickinson, 1974).

A. Atmospheric modeling

At present, the best-developed hierarchy is for atmospheric models; we summarize this

hierarchy following Ghil (1995). The first rung is formed by zero-dimensional (0-D) models,
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where the number of dimensions, from zero to three, refers to the number of independent space

variables used to describe the model domain, i.e. to physical-space dimensions. Such 0-D models

essentially attempt to follow the evolution of global surface-air temperature T  as a result of

changes in global radiative balance (Crafoord and Källén, 1978; Ghil and Childress, 1987, Sec.

10.2):

c
dT

dt
R R= −i o , (1.1a)

R Q T R m T Ti o= − =µ α σ0
41{ ( )}, ( ) . (1.1b,c)

Here Ri and Ro  are incoming solar radiation and outgoing terrestrial radiation, while c is the

heat capacity of the global atmosphere, plus that of the global ocean or some fraction thereof,

depending on the time scale of interest: one might only include in c  the ocean mixed layer when

interested in subannual time scales but the entire ocean when studying paleoclimate; dT dt  is the

rate of change of T  with time t, Q0 is the solar radiation received at the top of the atmosphere, σ is

the Stefan-Boltzmann constant, and µ is an insolation parameter, equal to unity for present-day

conditions. To have a closed, self-consistent model, the planetary reflectivity or albedo α and

greyness factor m have to be expressed as functions of T ; m= 1 for a perfectly black body and

0<m < 1 for a grey body like planet Earth.

There are two kinds of one-dimensional (1-D) atmospheric models, for which the single

spatial variable is latitude or height, respectively. The former are so-called energy-balance models

(EBMs: Budyko, 1969; Sellers, 1969), which consider the generalization of the model (1) for the

evolution of surface-air temperature T=T(x,t), say,

c x
T

t
R R D( ) .

∂
∂

= − +i o (2)
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Here the terms on the right-hand side can be functions of the meridional coordinate x

(latitude, co-latitude, or sine of latitude), as well as of time t and temperature T.  The horizontal heat-

flux term D expresses heat exchange between latitude belts;  it typically contains first and second

partial derivatives of T with respect to x.   Hence the rate of change of local temperature T  with

respect to time also becomes a partial derivative, ∂ ∂T t/ .

The first striking results of theoretical climate dynamics were obtained in showing that

slightly different forms of Eq. (2) could have two stable steady-state solutions, depending on the

value of the insolation parameter µ [see Eq. (1.1b)] (Held and Suarez, 1974; Ghil, 1976; North et

al., 1981).  In its simplest form, this multiplicity of stable steady states, or physically possible

“climates” of our planet, can be explained in the 0-D model (1.1) by the fact that—for a fairly

broad range of µ-values around µ= 1.0—the curves for R i   and Ro as a function of T intersect in 3

points.  One of these corresponds to the present climate (highest T -value), and another one to an

ice-covered planet (lowest T -value); both of these are stable, while the third one (intermediate T -

value) is unstable. To obtain this result, it suffices to assume that α α= ( )T  is a piecewise-linear

function of T , with high albedo at low temperature, due to the presence of snow and ice, and low

albedo at high T , due to their absence, while m= m(T ) is a smooth, increasing function of T  that

attempts to capture in its simplest from the “greenhouse effect” of trace gases and water vapor

(Ghil and Childress, 1987, Ch. 10).

The 1-D atmospheric models in which the details of radiative equilibrium are investigated

with respect to a height coordinate z (geometric height, pressure, etc.) are often called radiative-

convective models (Manabe and Strickler, 1964; Ramanathan and Coakley, 1978; Charlock and

Sellers, 1980), since convection plays a key role in vertical heat transfer. While these models

preceded historically EBMs as rungs on the modeling hierarchy, it was only recently shown that

they, too, can exhibit multiple equilibria (Li et al., 1997; Rennó, 1997). The word (stable)

“equilibrium,” here and in the rest of this chapter, refers simply to a (stable) steady state of the

model, rather than to true thermodynamic equilibrium.
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Two-dimensional (2-D) atmospheric models are also of two kinds, according to the third

space coordinate which is not explicitly included. Models that resolve explicitly two horizontal

coordinates, on the sphere or on a plane tangent to it, tend to emphasize the study of the dynamics

of large-scale atmospheric motions (see Sec. II below), whether they have a single layer (Charney

and DeVore, 1979; Legras and Ghil, 1985) or two (Lorenz, 1963b; Reinhold and Pierrehumbert,

1982). Those that resolve explicitly a meridional coordinate and height are essentially combinations

of EBMs and radiative-convective models and emphasize therewith the thermodynamic state of the

system, rather than its dynamics (Saltzman and Vernekar, 1972; MacCracken and Ghan, 1988;

Gallée et al., 1991). Yet another class of “horizontal” 2-D models is the extension of EBMs to

resolve zonal, as well as meridional surface features, in particular land-sea contrasts (Adem, 1970;

North et al., 1983; Chen and Ghil, 1996).

Additional types of 1-D and 2-D atmospheric models are discussed and references to these

and to the types discussed above are given by Schneider and Dickinson (1974) and Ghil (1995),

along with some of their main applications. Finally, to encompass and resolve the main atmospheric

phenomena with respect to all three spatial coordinates, general circulation models (GCMs) occupy

the pinnacle of the modeling hierarchy. Their genesis and the special role of successive generations

of UCLA GCMs in the development and application of atmospheric GCMs to climate problems in

general are covered elsewhere in this volume in great detail. Rather than dwell on this history in the

present chapter, we proceed to outline, even more succinctly, the modeling hierarchies that have

grown over the last quarter-century in ocean and coupled ocean-atmosphere modeling.

Before doing so, it is worth noting that the results of climate simulations with GCMs,

whether atmospheric or coupled, are often still interpreted in terms of the understanding gained

from 0-D or 1-D EBMs. Wetherald and Manabe (1975), using a simplified sectorial GCM,

confirmed the dependence of mean zonal temperature on the insolation parameter µ (the normalized

"solar constant") obtained for 1-D EBMs by various authors. In fact, the sensitivity ( )
.

dT dµ
µ =1 0

of global temperature T  to changes in µ near the present-day climate equals about 1K per 1%

change in the insolation for both EBMs and GCMs. Many GCM studies of climate-change
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response to increases in greenhouse trace-gas concentrations use actually a linearized version of Eq.

(1.1),

c
dT

dt
T Q= − +λ , (1.3a)

λ λ= =
= =
∑ ∑i
i

I

j
j

J

Q Q
1 1

, , (1.3b,c)

for interpreting the roles of the different feedbacks λi, positive (λi < 0) or negative (λi > 0), and heat

sources, Qj > 0, or sinks, Qj < 0 (e.g., Schlesinger and Mitchell, 1987; Cess, Potter, et al., 1989; Li

and Le Treut, 1992).

B. Ocean and coupled modeling

The simplest 0-D ocean models are so-called box models, used to study the stability of the

oceans' thermohaline circulation (Stommel, 1961; see Sec. IV below) or biogeochemical cycles

(Sarmiento and Toggweiler, 1984; Keir, 1988; Paillard et al., 1993). There are 1-D models that

consider the vertical structure of the upper ocean, whether the oceanic mixed layer only (Kraus and

Turner, 1967; Karaça and Müller, 1989) or the entire thermocline structure.

For the oceans, 2-D models also fall into the two broad categories of "horizontal" and

"vertical." Models which resolve two horizontal coordinates emphasize the study of the oceans'

wind-driven circulation (Cessi and Ierley, 1995; Jiang et al., 1995c; Berloff and Meacham, 1997),

while those that consider a meridional section concentrate on the overturning thermohaline

circulation (THC: Quon and Ghil, 1992, 1995; Thual and McWilliams, 1992). The wind-driven

circulation is involved most strongly in sub- and interannual climate variability, while changes in the

THC affect most strongly climate variability on the decade-to-century time scale and longer. Still,

the circulation in a predominantly horizontal or vertical plane has to affect the same water masses,

and 3-D ocean GCMs are thus indispensable in understanding oceanic variability (McWilliams,

1996).
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Bryan and Cox's (1967) model has played a role for the development and applications of

such models that resembles the one played by the UCLA GCM (e.g., Arakawa and Lamb, 1977) for

atmospheric ones. A number of simplified versions of this ocean GCM (Bryan, 1986; Chen and

Ghil, 1995) have been used in exploratory studies of multiple equilibria and self-sustained

oscillations in the THC, in a spirit that resembles the use of a simplified atmospheric  GCM by

Wetherald  and Manabe (1975) to complement EBM results on multiple climate equilibria.

A fairly well developed hierarchy of coupled ocean-atmosphere models has been applied to

the problem of seasonal-to-interannual variability in the tropical Pacific ocean (Neelin et al., 1994;

see Sec. III below). Its most important rungs are, in ascending order: essentially 0-D simple

models, like the delay-oscillator model of Suarez and Schopf (1988); essentially 1-D intermediate

coupled models (Cane and Zebiak, 1985; Jin et al., 1994); essentially 3-D hybrid coupled models,

in which an ocean GCM is coupled to a much simpler, diagnostic atmospheric model (Neelin, 1990;

Barnett et al., 1993); and fully coupled GCMs (Neelin et al., 1992; Robertson et al., 1995a, b).

Recently, hybrid models of this type have also been applied to climate variability for the midlatitude

(Weng and Neelin, 1998) and global (Chen and Ghil, 1996; Wang et al., 1999) coupled system.

C. Dynamical systems theory

It has become fairly commonplace to state that the climate system contains numerous

nonlinear processes and feedbacks, and that its behavior is rather irregular, but not totally random.

Dynamical systems theory studies the common features of nonlinear systems of differential

equations, ordinary (Smale, 1967) and partial (Constantin et al., 1989). The work of Lorenz (1963a,

1964) has played a key role in establishing the relevance of this theory to studying climate

variability, as well as in advancing the theory itself.

This theory can be used systematically to explore robust features of climate-system

behavior on a given time scale—intraseasonal, seasonal-to-interannual, and interdecadal—as we

move up and down the rungs of the modeling hierarchy for the given problem, and from the models

to the relevant observations. The main features of dynamical systems theory that are important for
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the study of climate have been summarized by Ghil et al. (1991a); they involve essentially

bifurcation theory (Guckenheimer and Holmes, 1983) and the ergodic theory of dynamical systems

(Eckmann and Ruelle, 1985).

Bifurcation theory permits one to follow—through successive bifurcations, computed

analytically or numerically—climatic behavior from the simplest kind of model solutions to the

most complex, from single equilibria through multiple ones and on to periodic, chaotic and fully

turbulent  solutions. Bifurcations can be computed analytically only for steady states (fixed points

in the language of the theory) and periodic solutions (limit cycles  in the same language), and for

relatively simple models (Charney and DeVore, 1979; North et al., 1981; Jin and Ghil, 1990).

Transitions to more complicated behavior, quasi-periodic, chaotic, or fully turbulent, need to be

investigated numerically.  Furthermore, even transitions to multiple equilibria or to periodic

solutions need to be computed numerically in more detailed, realistic models (Ghil, 1976; Legras

and Ghil, 1985; Strong et al., 1995).

The ergodic theory of dynamical systems provides statistical models for deterministically

chaotic, as well as stochastically perturbed, climate evolution in space and time. This kind of

nonlinear statistics permits one to evaluate systematically to which extent the behavior of fairly

complex climate-model solutions matches that obtained with simpler, more easily understandable

models, on the one hand, and that reflected by the existing observations, on the other (see, again,

Ghil et al., 1991a; Ghil, 1995; and further references therein).  A number of scalar quantities are

obtained by applying the theory to univariate time series, such as the leading Lyapunov exponents

or the various dimensions associated with the dynamical system that presumably produced the time

series in question (Guckenheimer and Holmes, 1983; Drazin and King, 1992). The leading

Lyapunov exponent provides a nonlinear generalization of the linear stability of a steady state; its

being positive indicates that the system it characterizes  is chaotic.  Of the various phase-space

dimensions (Eckmann and Ruelle, 1985) used to quantify a dynamical system’s number of

independent degrees of freedom, the correlation dimension (Grassberger and Procaccia, 1983)

became best known for its ease of computation.
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In the study of climate variability across the modeling hierarchy, it is useful to apply more

sophisticated numerical tools of ergodic theory than those that produce the scalar quantities above.

These tools for the investigation of spatio-temporal regularities include various methods of cluster

analysis for the classification of multiple weather regimes (Cheng and Wallace, 1993; Kimoto and

Ghil, 1993a, b) and advanced methods for the analysis and prediction of uni- and multivariate time

series (Vautard and Ghil, 1989; Plaut and Vautard, 1994; Dettinger et al., 1995; Ghil and Jiang,

1998).

These ideas  from dynamical systems theory will be illustrated in the remainder of this

chapter by applying them, in succession, to low-frequency atmospheric variability (Sec. II),

seasonal-to-interannual climate variability (Sec. III), and decade-to-century variability in the THC

(Sec. IV). In each section, the basic phenomena to be explained will be presented, the main

ingredients for the solution of the climate problem thus posed will be derived by the use of simple

models, and the rungs of the hierarchy climbed up to GCMs. In Sec. II these will be atmospheric

GCMs, in Sec. III coupled GCMs, and in Sec. IV ocean GCMs and hybrid models. A possible

road map for the further integration of GCMs into systematic climate-problem solving will be

discussed in Sec. V.

II. Intraseasonal oscillations, their theory and simulation

Intraseasonal time scales range from the deterministic limit of atmospheric predictability, of

about 10 days, up to a season, say 100 days. They occupy a window of overlap between short

climatic time scales and low-frequency variability intrinsic to the atmosphere. These time scales are

of particular importance to extended-range weather prediction. There are two complementary ways

of describing low-frequency atmospheric variability: i) episodic, via multiple weather (Reinhold and

Pierrehumbert, 1982) or flow (Legras and Ghil, 1985) regimes, and (ii) oscillatory, via broad-peak,

slowly modulated oscillations (Ghil et al., 1991a, and references therein). We restrict ourselves here

to the latter.
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A. Extratropical oscillations: observations and theory

Variations in global atmospheric angular momentum (AAM) and in the length of day on

intraseasonal time scales are highly correlated with each other; both quantities exhibit spectral peaks

with periods near 40 and 50 days (Dickey et al., 1991), among others. Essentially, the Earth-

atmosphere system is closed with respect to angular momentum exchanges on this time scale,

except for the well-known tidal effects of the Sun and Moon, that can be easily computed and

eliminated.  Once this is done, what remains is the following: when the midlatitude westerly winds

pick up, or the tropical easterlies slow down, the solid earth slows down in its rotation, and the

length of day increases; hence the high positive correlation between the latter and AAM.

The latitude-frequency dependence of observed AAM variance is shown in Fig. 1, averaged

over twelve years and all seasons. It is clear from the figure that the 50-day peak is largely

associated with AAM fluctuations in the tropics, which dominate the global AAM. The 40-day peak,

however, appears to be associated primarily with variations in the strength of the midlatitude

westerlies: such a peak appears both in the Northern Hemisphere (NH) and in the Southern

Hemisphere.  The amplitude of the 40-day oscillations in zonal winds is known, however, to be

largest during boreal winter, when the winds are strongest in the NH (Weickmann et al., 1985; Ghil

and Mo, 1991; Strong et al., 1993, 1995), and we shall thus concentrate here on the longer data sets

and more detailed modeling studies for the NH.

[Fig. 1 near here, please.]

The extent to which the tropical and NH oscillations are independent phenomena or

influence each other is still the subject of active debate. The tropical oscillation was discovered by

Madden and Julian (1971, 1972) in zonal winds and tropical convection over the equatorial Pacific,

although its origins are still not well understood. Extratropical oscillations have been found in

observed NH planetary-scale circulation anomalies with periods of 20–70 days (Branstator, 1987;

Kushnir, 1987; Ghil and Mo, 1991; Plaut and Vautard, 1994). There is some evidence that the

midlatitude circulation over the North Pacific is correlated to convective anomalies associated with
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the tropical oscillation (Weickmann et al., 1985; Lau and Phillips, 1986; Higgins and Mo, 1997).

On the other hand, Dickey et al. (1991) and Ghil and Mo (1991) found the extratropical mode to be

often independent of, and sometimes to lead the tropical one. Upper-level potential vorticity

anomalies are known to propagate from the midlatitudes into the tropics, associated with northwest-

to-southeast tilting troughs (Liebmann and Hartmann, 1984). They are accompanied by cold surges

and can cause episodes of intense tropical convection that appear to be related to the intraseasonal

oscillation in the tropics (Lau and Li, 1984; Hsu et al., 1990).

Our focus here is on how a hierarchy of models can be used to formulate and test the

hypothesis that the 40-day oscillation is an intrinsic mode of the NH extratropics, associated with

the interaction of the jet stream with midlatitude mountain ranges. The rudiments of this hypothesis

originate in the highly idealized "toy" barotropic model of Charney and DeVore (1979), which was

used to study the interaction between a zonal flow and simple zonal-wavenumber 2 topography.

Their model exhibits two stable equilibria for the same strength of the prescribed zonal forcing,

which represents the strength of the pole-to-equator temperature contrast.

Figure 2a shows the model's bifurcation diagram, with the strength ψ A
 of the zonal jet in

the model's steady-state solutions plotted against the corresponding strength ψ A
*  of the forcing.

The two stable equilibria—marked Z and R–— are associated with "zonal" (higher AAM) and

"blocked" (lower AAM) flow respectively, as illustrated in Fig. 2b. The near-zonal solution is close

in amplitude and spatial pattern to the forcing jet and is influenced very little by the topography,

while the blocked solution is strongly affected by it. In the blocked-flow solution, a ridge is located

upstream of the "mountains," similar to the situation during a typical observed West Coast block.

This configuration, with a negative zonal pressure gradient on the windward slope of the mountains,

corresponds to a negative mountain torque on the atmosphere.

[Fig. 2 near here, please.]

More complex models—both barotropic and baroclinic, with more spatial degrees of

freedom than Charney and DeVore's (1979)—have been found to exhibit multiple flow patterns that

are similar to those just described, for realistic values of the forcing.  The crucial difference in these
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models is that the equilibria are no longer stable, and the system oscillates around the blocked

solution or fluctuates between the zonal and blocked solutions in an irregular way (Legras and Ghil,

1985).

Jin and Ghil (1990) showed that, when a sufficiently realistic meridional structure of the

solutions' zonal jet is allowed, the back-to-back saddle-node bifurcations of Fig. 2a are replaced by

Hopf bifurcation  and thus transition to finite-amplitude periodic solutions—also called limit cycles

(see Sec. I.C)—can occur. Eigenanalyses of the unstable equilibria in a higher-resolution barotropic

model, as well as its time-dependent solutions, also indicate oscillatory instabilities with

intraseasonal (35–50 days) and biweekly (10–15 days) time scales (Strong et al., 1993). Floquet

analysis of this model's limit cycles (Strong  et al., 1995) confirms that the 40-day oscillations that

arise in it by oscillatory topographic instability are stronger in winter than in summer, like the NH

observed oscillations (Knutson and Weickmann, 1987; Ghil and Mo, 1991).

B. GCM simulations and their validation

Atmospheric GCMs provide a powerful tool for testing the theory of NH extratropical

oscillations developed in simpler models. Marcus et al. (1994, 1996) made a 3-yr perpetual-January

simulation with a version of the UCLA GCM that produces no self-sustained Madden-Julian

oscillation in the tropics. A robust 40-day oscillation in AAM is found to arise in the model’s NH

extratropics when standard topography is present. Three shorter runs with no topography produced

no intraseasonal oscillation, consistent with a topographic origin for the NH extratropical oscillation

in the standard model. The spatial structure of the circulation anomalies associated with the model's

extratropical oscillation is shown in Fig. 3, in terms of 500-mb geopotential height composites

during the peak (panel a) and quadrature (panel b) phase of the AAM cycle.

[Fig. 3 near here, please.]

The oscillation is dominated by a standing, wavenumber-two pattern, which undergoes

tilted-trough vacillation. High values of AAM are associated with low 500-mb heights over the

northeast Pacific and Atlantic Oceans (Fig. 3a), and vice-versa. This resembles the configuration
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seen in Charney and DeVore's (1979) simple model (see Fig. 2b here). The GCM's NE-SW tilting

phase in Fig. 3a and NW-SE tilting phase in Fig. 3b are strongly reminiscent of the extremes and

intermediate phases of the 40-day oscillation that arises by Hopf bifurcation from the blocked

equilibrium in the Legras and Ghil (1985) model (M. Kimoto, pers. commun., 1986).

The successive phases of the 28–72-day band-passed fluctuations in 250-mb

streamfunction anomalies analyzed by Weickmann  et al. (1985; see Figs. 7 and 9a–d there) also

exhibit good agreement with the evolution of the 40-day oscillation in the work of Marcus and

colleagues with the UCLA atmospheric GCM (see Ghil  et al., 1991b, for a video clip of the

evolution of 500-mb heights, 250-mb streamfunction fields, and sea-level pressures during the

atmospheric GCM's 40-day oscillation). The height pattern in Fig. 3a is very similar, furthermore,

to the extreme-phase patterns obtained from observed data by correlating the 10-day low-pass

filtered wintertime 500-mb height fields with the sum of the mountain torques computed over the

Rockies, Himalayas and Greenland (F. Lott, A. W. Robertson and M. Ghil, 1999, in preparation).

In the GCM, the two centers of action have slightly different frequencies; this gives rise to a

long-period modulation (of about 300 days) in the amplitude of the intraseasonal oscillation, similar

to that observed by Penland et al. (1991) in globally averaged AAM time series. Global correlations

with the leading empirical orthogonal functions (EOFs) of the NH extratropical 500-mb height field

show NE-SW teleconnection patterns extending into the tropics, in particular into the Indian Ocean,

similar to those found in observational studies (Weickmann et al., 1985; Murakami, 1988). The

model's zonally averaged latent heating in the tropics exhibits no intraseasonal periodicity, but a

near 40-day oscillation is found in cumulus precipitation over the western Indian Ocean, suggesting

an extratropical trigger of the 50-day oscillation in the tropics. Madden and Speth (1995; see Fig.

10 there) find that (mostly extratropical) mountain torques do lead (mostly tropical) friction torques

and eastward-moving convective systems during the 1987-88 winter singled out already by Dickey

et al. (1991; their Fig. 16).

Thus the careful analysis of perpetual-January runs with an atmospheric GCM confirms, on

the one hand, the topographic origin of the NH 40-day oscillation, originally suggested by simple-
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and intermediate-model studies (Ghil and Childress, 1987, Sec. 6.4; Jin and Ghil, 1990). On the

other, it provides greater realism and spatio-temporal detail, thus permitting a much better

confrontation of the theory with the existing observations (Dickey et al., 1991; Ghil and Mo, 1991).

III. El Niño-Southern Oscillation, from the Devil’s Staircase to prediction

A. ENSO's regularity and irregularity

The El Niño-Southern Oscillation (ENSO) phenomenon dominates interannual climate

variability over the tropical Pacific, and influences the atmosphere globally. Figure 4 shows the

power spectrum of the monthly sea-surface temperatures (SSTs) averaged over the eastern

equatorial Pacific's Niño-3 area (150
o
W–90

o
W, 5

o
S–5

o
N), for the time interval 1960–97. The

spectrum is plotted in terms of the leading EOFs of a singular-spectrum analysis (SSA: Vautard

and Ghil, 1989; Vautard et al., 1992).  Pairs of EOFs that are in phase quadrature with each other

correspond to nonlinear, anharmonic counterparts of sine-and-cosine pairs in standard Fourier

analysis (Dettinger et al., 1995; Jiang et al., 1995a).

[Fig. 4 near here, please.]

The observed SST time series contains a sharp annual cycle, together with two broader

interannual peaks centered at periods of 44 and 28 months.  This power spectrum provides a fine

example of the distinction between the sharp lines produced by purely periodic forcing and the

broader peaks resulting from internal climate variability or from the interaction of the latter with the

former (see the beginning of Sec. I).  The sharp annual peak reflects the seasonal cycle of heat

influx into the tropical Pacific and the phase locking of warm events to boreal winter that gives El

Niño its name.  The two interannual peaks correspond to the low-frequency and quasi-biennial

(QB) components of ENSO identified by a number of authors (Rasmusson et al., 1990; Allen and

Robertson, 1996). Jiang et al. (1995a) have demonstrated that major warm (El Niño) and cold (La

Niña) events during the time interval 1950–90 can be well reconstructed from ENSO’s quasi-
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quadrennial and QB components (see Fig. 9 there). Together, these two components account for

about 30% of the variance in the time series analyzed in Fig. 4.

In spite of the marked regularities apparent from Fig. 4 and its discussion, forecasting El

Niño and La Niña events has met with mixed success, even for subannual lead times (Latif et al.,

1994): year-to-year variations in forecast skill at 6–12-month lead time have been noticed by the

authors of the over a dozen models that routinely produce ENSO forecasts on a quarterly basis (see

Sec. III.C below).  Any satisfactory theory of ENSO  should produce consistently reliable forecasts

at such lead times.  To do so, the theory must account for the observed low-frequency and QB

peaks and the close relationship of these two with the annual cycle, on the one hand, as well as for

the irregular occurrence of extreme events, on the other.

Much of our theoretical understanding of ENSO comes from relatively simple, essentially

0- and 1-D coupled models, consisting of a shallow-water or two-layer ocean model coupled to

steady shallow-water-like atmospheric models with heavily parameterized physics (see Sec. I.B and

references there); the more complete ones among these models are often called intermediate coupled

models (Neelin et al., 1994). In these models, ENSO-like variability has been shown to result from

an oscillatory instability of the coupled ocean-atmosphere's annual-mean climatological state. Its

nature has been investigated in terms of the dependence of the primary Hopf bifurcation on

fundamental parameters, such as the coupling strength, oceanic adjustment time scale, and the

strength of surface currents (Jin and Neelin, 1993).

The growth mechanism of ENSO is undisputed, arising from positive atmospheric

feedbacks on equatorial SST anomalies via the surface wind stress, as first hypothesized by

Bjerknes (1969). The cyclic nature of the unstable mode is more subtle and depends on the time

scales of response within the ocean. Recently, there has been renewed interest in the thermal

discharge-recharge hypothesis of Cane and Zebiak (1985) and Wyrtki (1986). Here the memory of

the system resides in a disequilibrium between the wind stress and the meridional exchange of heat

between equatorial and off-equatorial regions (Jin, 1997).
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B. The Devil's Staircase across the modeling hierarchy

Regarding the relationship between El Niño and the annual cycle, Chang et al. (1994), Jin et

al. (1994) and Tziperman et al. (1994) found that including an annual cycle in the basic state of

their simple or intermediate models changed only slightly the spatial structure of the oscillatory

instability. However, it caused the ENSO cycle to frequency-lock to rational multiples of the annual

frequency in a "Devil's Staircase." This "staircase" represents a scenario of transition to

deterministic chaos, and involves two parameters: as one changes a parameter that increases the

period of the intrinsic ENSO instability, frequency-locking to successively longer rational multiples

of the annual cycle occurs, according to the mechanism of subharmonic resonance (see Fig. 5a). As

a second parameter, the coupling strength between the model’s ocean and atmosphere, increases, the

steps on the staircase broaden and begin to overlap (compare Fig. 5b to Fig. 5a), and the model's

ENSO cycle becomes irregular due to jumps between the steps.

[Fig. 5 near here, please.]

Moving one rung higher in the model hierarchy, hybrid coupled models, consisting of an

ocean GCM coupled to a simple atmosphere, have been used for sensitivity studies in a more

realistic setting. Syu et al. (1995) demonstrated that introducing an annual cycle caused the period

of oscillation in their model to shift from 2.3 years to exactly 2 years, and thus to frequency lock

with the annual cycle in the manner predicted by theory.

At the top of the model hierarchy, over a dozen coupled ocean-atmosphere GCMs have now

been used to simulate the climate variability of the tropical Pacific (Neelin, Latif, et al., 1992;

Mechoso, Robertson, et al., 1995). These coupled GCMs have exhibited a wide range of seasonal

and interannual behavior, with different amplitudes and phases of the seasonal cycle (Mechoso,

Robertson, et al., 1995), as well as different periods, amplitudes and spatio-temporal characteristics

of the interannual variability (Neelin, Latif, et al., 1992), and with zonally propagating or standing

SST anomalies.
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For example, Robertson et al. (1995a, b) investigated the seasonal cycle and interannual

variability in 45 years of simulations with the UCLA atmospheric GCM, coupled to a tropical-

Pacific basin version of the Geophysical Fluid Dynamics Laboratory (GFDL) ocean GCM; the

latter is a descendent of Bryan and Cox's (1967) model (see Sec. I.B  above) and the entire coupled

GCM is described in detail by Mechoso (1999) in the present volume. The simulations were found

to be characterized by ENSO-like QB and quasi-quadrennial modes, identified by using

multichannel SSA (Plaut and Vautard, 1994) along the equator, but with weaker variability than the

observed. Two simulations that differed only in details of the atmospheric GCM's surface-layer

parameterizations are of particular interest, because the first (Decade I) was found to be dominated

by a QB oscillation (Fig. 6a), while a quasi-quadrennial period dominated the second (Decade II:

Fig. 6b).

[Fig. 6 near here, please]

A 100-year-long simulation with NASA Goddard's Aries-Poseidon coupled GCM exhibits

both quasi-quadrennial and QB spectral peaks (P. Schopf and M. Suarez, pers. commun., 1995) of

a strength very similar to that observed in the Cooperative Ocean-Atmosphere Data Set (COADS)

(Fig. 7a).  These results are further confirmed by a 60-year run of NCEP’s coupled GCM (Ji et al.,

1998; see Fig. 7b).

 [Fig. 7 near here, please.]

The complete Devil's Staircase scenario, in fact,  calls for successively smaller peaks

associated with the harmonics of the 4-year step, at 4/1=4, 4/2=2, and 4/3 years. Both the QB and

4/3-year = 16-month peak are present in observed SST data (Jiang et al., 1995a; Allen and

Robertson, 1996). There is a smaller and broader 18–20 month peak present in the UCLA coupled

GCM in Fig. 6b, which can be interpreted as a merged version of these two peaks.

Work with intermediate coupled models suggests that the results shown in Figs. 6 and 7,

together with those obtained using other coupled GCMs, can be explained in terms of each GCM

simulation's location in the space spanned by a set of fundamental parameters, analogous to those

that appear in the simple model of Jin and Neelin (1993). Clearly, however, the value of a simplified
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model parameter, such as "coupling strength," has a nontrivial expression in terms of the various

physical parameterizations in the coupled GCM.

Figure 8 illustrates the spatial structure of the quasi-quadrennial mode along the equator in

the UCLA coupled model, derived from multichannel SSA of a 26-year extension of the second

simulation (Fig. 6b). The model's QB mode (not shown) has a structure that resembles that of Fig.

8. This common structure consists of predominantly standing oscillations in SST and zonal wind

stress that peak in the central or east Pacific, accompanied by an oscillation in equatorial

thermocline depth that is characterized by a phase shift of about 90o across the basin—much less

than the 180o that Sverdrup balance would imply—with west leading east. These features are all

characteristic of observed ENSO events (Neelin et al., 1994).

[Fig. 8 near here, please.]

Simple and intermediate models suggest the following hypotheses for producing multiple,

broad spectral peaks in the interannual band: (1) the quasi-quadrennial mode might arise by period

doubling from the QB mode (Münnich et al., 1991); (2) the observed peaks may result from the

linear superposition of several marginally damped modes, excited by white-noise forcing (Penland

and Sardeshmukh, 1995); (3) stochastic resonance can cause intermittent jumps between the forced

seasonal cycle and the lower-period internal ENSO cycle, in the presence of a certain level of noise

(Stone et al., 1998); (4) the interaction of the seasonal cycle and the fundamental ENSO mode can

nonlinearly entrain this mode to a rational multiple of the annual frequency and produce additional

peaks, according to a Devil's Staircase (Chang et al., 1994; Jin et al., 1994; Tziperman et al., 1994);

and (5) the quasi-quadrennial and QB peaks could represent separate oscillations, generated by

different mechanisms, each with an independent frequency. The latter hypothesis, while not

supported by explicit model results, is quite plausible when considering the differences in detailed

ENSO mechanisms between models and the parameter dependence of the basic oscillation period

for each model (see Neelin et al., 1998, and references therein).

The results of GCM simulations, along with existing observational data, provide a means of

distinguishing between these alternatives. The fact that the variance associated with the low-
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frequency mode  is actually larger than that associated with the QB mode in the observations  (cf.

Jiang et al., 1995a, and Fig. 4 here) and that the two modes have comparable variance in the GCM

simulations where they are both present (Figs. 7a, b here ) essentially rules out period doubling

(hypothesis 1) as an explanation of ENSO irregularity, since that scenario would imply a much

smaller quasi-quadrennial mode. The similarity of the spatial structures of the quasi-quadrennial

and QB modes, both in coupled GCMs (Robertson et al., 1995b) and observations (Moron et al.,

1998), weighs against hypothesis (5) of different physics producing two independent frequencies.

In the case of the UCLA coupled GCM, variations in subsurface thermocline depth were similar in

all three interannual frequencies isolated, also supporting this point.

The closeness of the quasi-quadrennial and QB peaks, in observations and the GCMs cited,

to integer multiples of the annual period, on the other hand, and the observed 15–16-month peak in

observed data are all consistent with subharmonic frequency locking (hypothesis 4). The basic

similarity between the spatial structures of the ENSO modes and the annual cycle in the UCLA

GCM is further evidence of an intimate relationship between ENSO variability and the annual cycle.

The low-frequency component of observed equatorial Pacific SSTs changes in period

around 1960, from being near a 5-year period before, to a near-4-year period after 1960 (Moron et

al., 1997). This fairly abrupt change in frequency can be interpreted in terms of frequency locking

to different integer multiples of the annual period, and thus to different steps on the Devil's

Staircase in Fig. 5b.

The stochastic resonance hypothesis is, in a sense, intermediate between the Devil's

Staircase and the stochastically forced linear-model hypothesis (2). The latter is rendered less

plausible by the fact that it does not produce phase locking of individual warm and cold events to

the boreal winter; it is the preference of warm events to peak in or near late December that gives El

Niño its name (see, for instance, the histograms of warm events vs. calendar month in Figs. 3 and 5

of Chang et al., 1996). On the other hand, Jin et al. (1996) found that when "weather noise" is

included in their model of the Devil’s Staircase, the resulting irregularity still carries the signature

of the subharmonic spectral peaks. It is difficult to tell in which way, if any, the stochastic-
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resonance model of Stone et al. (1998) differs from the stochastically perturbed version of the

Devil's Staircase considered by Jin et al. (1996) and whether a subtle difference, if it exists, can be

validated by the existing observations or GCM simulations, one way or the other.

C. Regularity and prediction

The standard application of dynamical systems theory to forecast error growth and

predictability involves low-order dynamical systems that are entirely chaotic, i.e., have a purely

continuous power spectrum, such as the Lorenz (1963a) system. For such systems, the leading

Lyapunov exponents (e.g., Eckmann and Ruelle, 1985) are positive, and the largest one, λ1 say,

gives a rough estimate of the predictability limit Tp;  Tp can be defined as the time it takes for a

typical observation error e0 to grow until it reaches an asymptotic level determined by the total

energy available to the system. The rough estimate T̂p  is based on the error growing at the rate

exp(λ1t) until it saturates at a level given by the system's climatological variance, σ ∞  say, according

to

e T0 1exp( ˆ )λ σp = ∞ . (3.1)

The error-growth curve in forced-dissipative systems (e.g., Ghil and Childress, 1987, Sec.

5.4) actually deviates from being exponential and has an inflection point before saturation (e.g.,

Kalnay and Dalcher, 1987), so Eq. (3.1) above will tend to underestimate the system's true Tp. This

is compensated for by the fact that the full system's additional degrees of freedom, which are

usually neglected in deriving the simplified system for which λ1 and hence the estimate T̂p  in Eq.

(3.1) is obtained, contribute additional error growth, often approximated as stochastic forcing in the

simplified system. This permits (3.1) for the simplified, deterministic system with a few degrees of

freedom—say a simple or intermediate model, in the terminology of Secs. I.A and I.B—to give a

reasonable approximation for the full system, with its infinity of degrees of freedom.
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There is, however, an additional source of predictability in systems that have periodic or

nearly periodic components, expressed as pure lines or broad peaks in their power spectrum. The

fact that the days are warmer than the nights or summers than winters is useful, predictable

information, independently of the change in average 24-hour or one-year temperature over a week

or a decade, as the case may be. Both examples are derived from purely periodic, externally forced

phenomena. Similar considerations apply, however, to internal periodicities that might only be

approximate, rather than exact and thus result in broad spectral peaks, rather than sharp lines (Ghil

and Childress, 1987, Sec. 12.6). Examples of such regularities are the intraseasonal oscillations

considered in Sec. II, the QB and low-frequency components of ENSO in this section, and the

interdecadal oscillations of Sec. IV.

In the case of ENSO, a considerable battery of models have been used for experimental

seasonal-to-interannual prediction of various indices, like the Southern Oscillation index (SOI: e.g.,

Keppenne and Ghil, 1992), or fields like the Niño-3 SST anomalies considered here. Over fifteen

6–12-month forecasts have been published every quarter in the Experimental Long-Lead Forecast

Bulletin (ELLFB) of NOAA's Climate Prediction Center since 1992;  since Fall 1997, the ELLFB

has been published by the non-profit Center for Ocean-Land-Atmosphere  Studies and is available

electronically at http://grads.iges.org/ellfb.  The ELLFB forecasts employ both dynamically and

statistically based models.  The statistical models  span the range from classical time-domain

methods for time-series prediction through neural-network methods, while the dynamical ones go

from intermediate coupled models all the way to fully coupled GCMs.

Table I summarizes the forecast skill of six models that have been carrying out real-time

ENSO predictions for a few years' time: Zebiak and Cane's (1987) is an intermediate coupled

model, Barnett et al.'s (1993), a hybrid coupled model, Ji et al.'s (1994) a fully coupled GCM, while

Barnston and Ropelewski's (1992), Van den Dool's (1994) and Jiang  et al.'s (1995b) are all

statistical. The skills at 6-month lead are quite comparable, with the correlation between the field

being forecast and that actually observed equal to about 0.6–0.75 for the decade 1984–93; this level
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of correlation skill easily outperforms persistence and is generally considered as useful (Barnston

et al., 1994).

[Table I near here, please.]

The highest skill actually occurs in the table's last column, using a statistical model

(Keppenne and Ghil, 1992; Plaut and Vautard, 1994) that is explicitly based on extracting and

predicting the (nearly) periodic components of a time series. Ghil and Jiang (1998) argue that the

explanation for the comparable forecast skill of dynamical and statistical models is that most of this

skill—in the case of the coupled ocean-atmosphere system in the tropical Pacific—is due to the

model's capturing, more or less correctly, the system's oscillatory modes, QB and low-frequency.

Still, it is quite likely that the Ji et al.’s (1994) coupled GCM forecast of the rapid temperature rise

in the eastern tropical Pacific that occurred during late summer and early fall 1997, a few months

ahead of time, is due to its modeling correctly certain features of the nonlinear dynamics that are

event-specific, rather than nearly periodic (see also Hollingsworth, 1999).

IV. Interdecadal oscillations in the oceans’ thermohaline circulation

A. Theory and simple models

Historically, the thermohaline circulation (THC) was first among the climate system’s major

processes to be studied using a very simple mathematical model and be shown to possess multiple

equilibria (Stommel, 1961).  A sketch of the Atlantic Ocean’s THC and its interactions with the

atmosphere and cryosphere on long time scales is shown in Fig. 9.  These interactions can lead to

climate oscillations with multi-millenial periods — such as the Heinrich events (Ghil, 1994, and

references therein) — and are summarized in the figure’s caption, following Ghil et al. (1987).  An

equally schematic view of the global THC is provided by the widely known “conveyor belt”

diagram (e.g., Broecker, 1991), which does not commonly include these interactions.

[Fig. 9 near here, please.]

Basically, the THC is due to denser water sinking, lighter water rising, and water-mass

continuity closing the circuit through near-horizontal flow between the areas of rising and sinking.
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This is roughly the oceanic equivalent of the atmosphere’s Hadley circulation, with two notable

differences:

i) The ocean water’s density ρ  is a function of temperature T and salinity S, while that of

the air depends on temperature and humidity.

ii) Water sinks in and near fairly concentrated regions of intense convection, currently

located  mostly in high latitudes, and rises diffusely over the rest of the ocean;  air does rise most

intensely in cumulus towers, but overall the areas of net rising and sinking air in a Hadley cell are

quite comparable in extent, when viewed on the synoptic and planetary scales.

The effects of temperature and salinity on the ocean water’s density, ρ = ρ (T, S), oppose

each other:  the density ρ decreases with increasing T and increases with increasing S .  It is these

two effects that give the thermohaline circulation its name, from the Greek words for T and S.  In

high latitudes, ρ  increases as the water loses heat to the air above and, if sea ice is formed, as the

water underneath is enriched in brine.  In low latitudes, ρ increases due to evaporation but decreases

due to heat flux into the ocean.

For the present climate, the temperature effect is commonly assumed to be stronger than the

salinity effect, and ocean water is observed to sink in certain areas of the high-latitude North

Atlantic and Southern Ocean — with very few and limited areas of deep-water formation  elsewhere

— and to rise everywhere else; thus thermohaline, T more important than and hence before S.

During some past geological times, deep water apparently formed near the equator; such an

overturning circulation of opposite sign to that prevailing today  has been dubbed halothermal, S

before T (e.g., Kennett and Stott, 1991). The quantification of the relative effects of T and S on the

oceanic water masses’ buoyancy in high and low latitudes is far from complete, especially for

paleocirculations;  the association of the latter with salinity effects that exceed the thermal ones is

thus rather tentative.

Stommel (1961) considered a two-box model, with two pipes connecting the two boxes, and

showed that the system of two nonlinear, coupled ordinary differential equations (ODEs) which

govern the temperature and salinity differences between the two well-mixed boxes has two stable
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steady-state solutions, distinguished by the direction of flow in the upper and lower pipe.

Stommel’s paper was primarily concerned with distinct local convection regimes, and hence vertical

stratifications, in the North Atlantic and Mediterranean (or Red Sea), say.  Today, we mainly think

of one box as representing the low latitudes and the other one the high latitudes in the global THC.

The next step in the hierarchical modeling of the THC is that of 2-D meridional-plane

models (see Sec. I.B), in which the temperature and salinity fields are governed by coupled non-

linear partial differential equations (PDEs) with two independent space variables, latitude and depth,

say.  Given boundary conditions for such a model that are symmetric about the Equator, as are the

PDEs themselves, one expects a symmetric solution, in which water either sinks near the poles and

rises everywhere else (thermohaline) or sinks near the Equator and rises everywhere else

(halothermal);  these two symmetric solutions would correspond to the two equilibria of Stommel’s

(1961) box model.

In fact, Fig. 10 shows that symmetry breaking can occur, leading gradually from a

symmetric two-cell circulation  (Fig. 10a) to an antisymmetric one-cell circulation (approximately

achieved in Fig. 10c).  In between, all degrees of dominance of one cell over the other are possible,

with one such intermediate state shown in Fig. 10b.  A situation lying somewhere between Figs.

10b and 10c seems to resemble most closely the meridional overturning diagram of the Atlantic

Ocean in Fig. 9.

[Fig. 10 near here, please.]

This symmetry breaking can be described by a pitchfork bifurcation (e.g., Guckenheimer

and Holmes, 1983):

ẋ x= −µ 3. (4.1)

Here x stands for the amount of asymmetry in the solution, so that x  0  is the symmetric branch,

˙ /x dx dt≡  and µ is a parameter that measures the stress on the system.  For µ < 0  the symmetric

branch is stable, while for µ > 0  the two branches x = ± µ  inherit its stability.
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Thus, Figs. 10b and 10c both lie on a solution branch of the 2-D THC problem for which

the left cell dominates: say that North Atlantic Deep Water extends to the Southern Ocean’s polar

front, as it does in Fig. 9.  According to Eq. (4.1), another branch exists, whose flow patterns are

mirror images in the rectangular box’s vertical symmetry axis (the “equatorial plane”) of those in

Figs. 10b and 10c.  The existence of this second branch was verified numerically by Quon and Ghil

(1992; their Fig. 16).   Thual and McWilliams (1992) considered more complex bifurcation

diagrams for a similar 2-D model and showed the equivalence of such a diagram for their 2-D

model and a box-and-pipe model of sufficient complexity.

B. Bifurcation diagrams for GCMs

Bryan (1986) was the first to document transition from a two-cell to a one-cell circulation in

a simplified GCM with idealized, symmetric forcing, in agreement  with the three-box scenario of

Rooth (1982).  Internal variability of the THC was studied simultaneously in the late 1980s and

early 1990s on various rungs of the modeling hierarchy, from Boolean delay equation models (so-

called “formal conceptual models”: Ghil et al., 1987; Darby and Mysak, 1993) through box

models (Welander, 1986) and 2-D models (Quon and Ghil, 1995) to ocean GCMs.  A summary of

the different kinds of oscillatory variability found in the latter appears in Table II below.  Additional

GCM references for these three types of oscillations are given by McWilliams (1996).  The

interaction of the (multi-)millenial oscillations with variability in the surface features and processes

shown in Fig. 9 is discussed by Ghil (1994).

[Table II near here, please]

One example of the interaction between atmospheric processes and the THC is given by

Chen and Ghil (1996), who use a different kind of hybrid coupled model than that reviewed in Sec.

III.B, to wit a (horizontally) 2-D EBM (see Sec. I.A) coupled to a rectangular-box version of the

North Atlantic rendered by a low-resolution ocean GCM.  This hybrid model’s regime diagram is

shown in Fig. 11a.  A steady state is stable for high values of the coupling parameter  λao  or of the
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EBM’s diffusion parameter d.  Interdecadal oscillations with a period of 40–50 years are self-

sustained and stable for low values of these parameters.

[Fig. 11 near here, please]

The self-sustained THC oscillations  in question are characterized by a pair of vortices of

opposite sign that grow and decay in quadrature with each other in the ocean’s upper layers.  Their

centers follow each other anticlockwise through the northwestern quadrant of the model’s

rectangular domain.  Both the period and the spatio-temporal characteristics of the oscillation are

thus rather similar to those seen in a fully coupled GCM with realistic geometry (Delworth et al.,

1993).

The transition from a stable equilibrium to a stable limit cycle, via Hopf bifurcation, in Chen

and Ghil’s hybrid coupled model is shown in Fig. 11b.  The physical characteristics of the

oscillatory  instability that leads to the Hopf bifurcations have been described  in further detail by

Colin de Verdière and Huck (1999), using both a four-box ocean-atmosphere  and a number of

more detailed models.

V. Perspectives

Until about two decades ago, the tools of analytical and numerical bifurcation theory could

be applied only to 0-D THC models (Stommel, 1961) or 0- and 1-D climate models (Held and

Suarez, 1974; Ghil, 1976; North et  al., 1981).  We have illustrated in this review, by considering  a

few climate problems on different time scales, that the general theory can be combined with

powerful numerical tools to study successive bifurcations across the hierarchy of climate models, all

the way from 0–D global or box models (see above) to 2– and 3–D models: atmospheric (Legras

and Ghil, 1985; Marcus et al., 1996), oceanic (Thual and McWilliams, 1992; Ghil and Quon, 1992,

1995) and coupled  (Jin et al., 1994, 1996; Robertson et al., 1995b; Chen and Ghil, 1996).

Each bifurcation is associated with a specific linear instability of a relatively simple climate

state — oscillatory in the case of Hopf bifurcations and purely exponential in the case of saddle-
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node or pitchfork bifurcations —whose nonlinear saturation leads to more complicated climate

behavior.  Following the bifurcation tree, from one rung of the modeling hierarchy to the next,

permits us, therefore, to study with increasing detail and realism the basic physical mechanisms that

lead to climate variability.

Typically, the first one or two bifurcations will be captured fairly well by a lower-order or

otherwise very simple model of the climate problem of interest.  As the model’s number of degrees

of freedom or otherwise its complexity increase, more complicated and realistic regimes of behavior

will appear.  These regimes can only be reached by additional bifurcations.  The task of following

bifurcations numerically off solution branches with greater and greater complexity becomes more

and more challenging.  Various continuation methods (Keller, 1978; Kubicek and Marek, 1983)

have been applied to follow steady-state solution branches of more and more highly resolving

atmospheric (Legras and Ghil, 1985), oceanic (Speich et al., 1995) and coupled (Dijkstra and

Neelin, 1995) models.  Projected increase of computer power should make it possible to apply such

methods to currently available GCMs in the near future.

GCMs — atmospheric (Sec. II), oceanic (Sec. IV), and coupled (Secs. III and IV) —

provide climate-problem  solutions that have the greatest spatio-temporal detail and, one hopes, the

greatest degree of realism.  It is these solutions, therefore, that provide the best opportunity for

evaluating our theories of climate variability, developed by climbing the lower rungs of the modeling

hierarchy, against the observational evidence, such as it exists.

Such an evaluation, given the irregular character of observed climate variability, needs to be

informed by the ergodic theory of dynamical systems, which can describe this irregular behavior in

a consistent way.  The statistical tools of the latter theory, such as singular-spectrum analysis and

other advanced spectral methods, have to be applied in parallel to the GCMs’ simulations and to the

relevant data sets.  Studying the observed and simulated climate variability with the same

sophisticated tools can help pinpoint the aspects of this variability that we have understood, and can

therefore predict with confidence, and those that we have not.  Fortunately, there are many more of

the latter, and much work remains to be done.
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It is the authors’ hope that the tools and points of view presented in this chapter will help to

both diminish and increase the number of unsolved climate-variability problems.
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• Table I.  The characteristics and 6-month–lead skill of six ENSO forecast models, three of

them dynamical and three statistical.  Reproduced from Ghil and Jiang (1998), with the

permission of the American Geophysical Union.

Authors Zebiak
& Cane
(1987)*

Barnett et al.
(1993)*

Ji et al.
(1994)*

Barnston &
Ropelewski*

Van den
Dool

(1994)*

Jiang et al.
(1995b)

Model Physical:

simple

coupled

Hybrid: see

text

Physical:

coupled

GCMs

Statistical:

CCA

Empirical:

constructed

analog

Statistical:

SSA and M-

SSA

Predicted
SST region

 (5°N–5°S)

Niño-3

90°–150°W

Central
Pacific

140°–180°W

Niño-3.4

120°–170°W

Niño-3.4

120°–70°W

Niño-3.4

120°–170°W

Niño-3

90°–150°W

Period of

record

1970–93 1966–93 1984–93 1956–93 1956–93 1984–93

Skill**

(1982–93)

Corr 0.62

RMSE 0.95

SD 1.08

Corr 0.65a

RMSE 0.97

SD 1.10

Corr 0.69b

RMSE 0.83b

SD 1.00

Corr 0.66

RMSE 0.89

SD 1.11

Cor 0.66

RMSE 0.89

SD 1.11

Corr 0.74c

RMSE 0.50c

SD 1.00

* After Table 1 of Barnston et al. (1994).
** Two measures of skill are provided: i) correlation (Corr) between prediction and validation

anomaly fields (actual monthly values minus climatology) and ii) root-mean-square error (RMSE) of

prediction vs. validation, normalized by the variability of the validating field. SD indicates the

standard deviation of the observed SSTs over the time interval for which forecast results from each

model were available.
a,b  See Barnston et al. (1994) for details.
c  The results in this column represent retroactive real-time forecasts, like those for the Barnston

and Ropelewski  (1992) and Van den Dool (1994) models; the only column in the table based

exclusively on actual real-time forecasts is that for the Zebiak and Cane  (1987) model.  The

“mixed” forecast skill (i.e., based in part on retroactive real-time and in part on actual real-time

forecasts) of the Jiang et al. (1995b) model for the time interval January1984—December 1996 is

Corr=0.66 and RMSE=0.53, with actual forecasts published in ELLFB  since March 1995.  The

1997-98 warm event was predicted by this model since December 1996.
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Table II. Thermohaline circulation (THC) oscillations. Adapted from Ghil (1994), with the

permission of Elsevier Science B.V.

Time scale Phenomena Mechanism

Interdecadal 3-D, wind-driven +
thermohaline circulation

- Gyre advection (Weaver et
al., 1991, 1993).

- Localized surface-density
anomalies due to surface
coupling (Chen and Ghil,
1995, 1996).

Centennial Loop-type, Atlantic-Pacific
circulation

Conveyor-belt advection of
high-latitude density anomalies
(Mikolajewicz and Maier-
Reimer, 1990).

Millennial Relaxation oscillation, with
“flushes” and superimposed
decadal fluctuations

Bottom-water warming, due to
high-latitude  freshening and
its braking effect (Marotzke,
1989; Chen and Ghil, 1995).
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Figure Captions

Figure 1: Latitude-frequency dependence of observed AAM variance, as shown by a contour plot of

power spectral density for the 46 equal-area belts numbered from south to north. The power

in each belt has been multiplied by the frequency; units are angular momentum squared

[(1/600)ms]2. The contour interval is 5.0, with contours starting at 20.0; values over 40.0 are

shaded. Reproduced from Dickey et al. (1991), with the permission of the American

Geophysical Union.

Figure 2: Multiple equilibria of a three-mode quasi-geostrophic model with simplified forcing and

topography. (a) Bifurcation diagram showing model response to changes in forcing; see

text for the explanation of abscissa and ordinate. The S-shaped bifurcation curve is typical

of two back-to-back saddle-node bifurcations  that give rise to two stable solution branches

(solid) separated by an unstable one (dashed). (b) Flow patterns of the zonal (upper panel)

and blocked (lower panel) equilibria, corresponding to the two stable equilibria Z and R–.

After Charney and DeVore (1979).  Reproduced from Ghil and Childress (1987), with the

permission of Springer Verlag.

Figure 3: Composite 500-mb maps from the perpetual-January GCM experiment of Marcus et al.

(1996). (a) For days on which the 36-60 day NH extratropical AAM exceeded 1.5 times its

rms value; maps for days with a negative (positive) anomaly were added with a positive

(negative) sign. (b) Constructed from maps taken 12 days earlier than those included in (a).

Contour interval is 20m, and negative contours are dashed. Reproduced from Marcus et al.

(1996), with the permission of the American  Meteorological Society.

Figure 4: Power spectrum of the leading reconstructed components (RCs) of the Niño-3 SSTs for

the time interval 1960–97, using monthly data from the Climate Prediction Center of the

National Centers for Environmental Prediction (NCEP). An SSA analysis with a window

width of 72 months was used to derive the RCs, whose power spectra were then computed

using the maximum entropy method, with 20 poles. The three curves show the annual cycle
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(short dashes), and the low-frequency (solid) and QB (long dashes) components of ENSO;

notice logarithmic units on the ordinate.

Figure 5: The Devil’s Staircase in the intermediate coupled ocean-atmosphere model of Jin et al.

(1994), plotted in terms of the frequency ratio of the model's inherent ENSO period to the

annual cycle, as a function of the parameter δs that affects the former. The coupling

parameter µ is the Hopf bifurcation parameter in the annual-average model of Jin and

Neelin (1993). (a) The approximate Devil’s Staircase for µ = µο, slightly above the primary

Hopf bifurcation where the ENSO mode goes unstable; all points shown correspond to

rational frequency ratios (some labeled). (b) Frequency-locked solutions for somewhat

larger values of µ ≈ 1.1µο, showing the rapid widening of the integer-period steps.

Reproduced from Jin et al. (1996), with the permission of Elsevier Science B.V.

Figure 6: Equatorial SST anomaly indices from the UCLA coupled GCM, constructed from RCs of

SST for (a) Decade I (130o–110oW, 4oS–4oN) and (b) Decade II (160o–140oW, 4oS–4oN).

Key: solid line—RCs 1–2; dashed line—RCs 3–4; and dotted line—RCs 5–6. Reproduced

from Robertson et al. (1995b), with the permission of the American  Meteorological

Society.

Figure 7a: Power spectrum of Niño-3 SST anomalies from 38 years of COADS data

(1950–87)—dashed-dotted line—and from a 38-year segment out of a 100-year integration

with the NASA Goddard Space Flight Center’s coupled GCM—solid line. Shown are the

first (quasi-quadrennial) and second (QB) pair of RCs from an SSA analysis with 100

monthly lags; the good match in amplitude between the two time series, for both spectral

peaks, is significant, since neither data set was normalized (P. Schopf and M. Suarez, pers.

commun., 1995). (b) Same as the solid line in panel (a) but based on a 60-year integration

of NCEP’s coupled GCM (Ji et al., 1998); SST anomalies courtesy of M. Ji (pers.

commun., 1998) and spectral analysis as in Fig. 4.  The monthly data in both panels were

deseasonalized by subtracting the mean annual cycle, with a 3-month running average



- 45 -

applied in (b); notice linear ordinate in both panels.

Figure 8: Hovmöller diagram along the equator, showing the structure of the quasi-quadrennial

mode in the UCLA coupled GCM. Plotted are RCs 1–2 for the 26-year extension to

Decade II: (a) SST (0.05 K), (b) τx (0.005 dyn cm-2), and (c) depth of 20oC isotherm, with

greater depth shown as negative (1 m); negative anomalies are stippled. Reproduced from

Robertson et al. (1995b), with the permission of the American  Meteorological Society.

Figure 9: Diagram of an Atlantic meridional cross section from North Pole (NP) to South Pole

(SP), showing mechanisms likely to affect the THC on various time-scales. Changes in the

radiation balance Rin -Rout are due, at least in part, to changes in extent of Northern

Hemisphere (NH) snow and ice cover, V, and how they affect the global temperature, T; the

extent of Southern Hemisphere  ice is assumed constant, to a first approximation.  The change

in hydrologic cycle expressed in the terms Prain-Pevap for the ocean and Psnow-Pabl for the snow

and ice is due to changes in ocean temperature.  Deep-water  formation in the  North Atlantic

Subpolar Sea (North Atlantic Deep Water: NADW) is affected by changes in ice volume and

extent, and regulates the intensity C of the THC;  changes in Antarctic Bottom Water

(AABW) formation are neglected in this approximation.  This in turn affects the system’s

temperature, and is also affected by it.  Reproduced from Ghil and McWilliams (1994), after

Ghil et al. (1987).

Figure 10: Stream-function fields for a 2-D, meridional plane THC model with so-called mixed

boundary conditions: the temperature profile and salinity flux are imposed at one horizontal

boundary of the rectangular box, while the other three boundaries are impermeable to heat and

salt. (a) Symmetric solution for low salt-flux forcing; (b, c) increasingly asymmetric solutions

as the forcing is increased.  Reproduced from Quon and Ghil (1992), with the permission of

Cambridge University Press.

Figure 11: Dependence of THC solutions on two parameters in a hybrid coupled model (HCM);

the two parameters are the atmosphere–ocean coupling coefficient λao  and the atmospheric
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thermal diffusion coefficient d . (a) Schematic regime diagram.  The full circles stand for the

model’s stable steady states, the open circles for stable limit cycles, and the solid curve is the

estimated neutral stability curve between the former and the latter. (b) Hopf bifurcation curve

at fixed d  = 1.0  and varying λao ; this curve was obtained by fitting a parabola to the model’s

numerical-simulation results, shown as full and open circles.  Reproduced from Chen and

Ghil (1996), with the permission of the American Meteorological Society.
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