WCRP/CLIVAR efforts to understand El Niño in a changing climate

Eric Guilyardi IPSL/LOCEAN, Paris & NCAS-Climate, U. Reading

Thanks to Andrew Wittenberg, Mike McPhaden, Matthieu Lengaigne

2015 El Niño Conference International Research Institute, November 2015

National Centre for Atmospheric Science

CLIVAR: CLIMATE & OCEAN

variability, predictability and change

To observe, simulate and predict changes in Earth's climate system with a focus on the **ocean-atmosphere system** as part of the climate system

- Enabling better understanding of climate variability, predictability and change
- To the benefit of society and the environment in which we live

Credit: Los Alamos National Laboratory

New CLIVAR Structure

ENSO in a changing climate

- Understanding ENSO and its underlying processes
- ENSO performance in GCMs
- ENSO diversity and unforced variations
- ENSO in a changing climate
- Some WCRP/CLIVAR community challenges

ENSO in a changing climate

"No changes in mean ENSO SST statistics in a warmer climate" (IPCC AR4, AR5)

CMIP5

Model biases dominate over scenario

Guilyardi et al. (2009), Cai et al. (2015)

ENSO processes

Atmosphere response to SSTA

- Bjerknes wind stress feedback (μ)
- Heat flux response (α)

Non linear processes:

- NL ocean dynamical
- Impact of WWE

Ocean response to $\boldsymbol{\tau}$ and HF anomalies

- Upwelling ("thermocline feedback")
- Zonal advection & Ekman feedbacks
- Wave dynamics
- Energy Dissipation

ENSO amplitude in GCMs

- ENSO in CMIP3: very large diversity of simulated amplitude
- Range reduced in CMIP5 (improved mean state ? tuned in modelling development process ?)
 IPCC AR5, Bellenger et al. (2014)

Atmosphere feedbacks in GCMs

Total Heat Flux lpha

Latent Heat Flux *C*LH

Models underestimate both μ I an α (error compensation) Shortwave feedback α sw main source of errors (clouds, convection) No clear evolution from CMIP3 to CMIP5

Bellenger et al. (2014), based on Lloyd et al. (2010, 2012)

ENSO in GCMs

Need to simulate ENSO right for the right reasons

Performance metrics

Process-based metrics

ENSO diversity

- No two El Niño events are alike
- Understanding this diversity is a challenge
- How long do we need to observe El Niño to detect a change ?

Capotondi et al. (2015)

20 centuries of NINO3 SSTs in GFDL 2.1 Pre-industrial unforced climate

Wittenberg (2009)

WORR Desearch Programme

How long do we need to observe El Niño to detect a change ?

2000 years simulation pre-industrial control GFDL 2.1

What is the base line ?

Stevenson et al. (2010):

Minimum length of simulation needed to statistically distinguish ENSO amplitude change = \sim 250 years

ENSO in changing climate

To understand if ENSO has changed, statistics (i.e. performance metrics) will only help us in 200 years. In the mean time we have to rely on physical understanding.

Process-based metrics

ENSO in changing climate

No change of <u>mean</u> El Niño SST statistics from CMIP scenario Using a process-based criteria (rainfall > 5 mm/day in east Pacific) Doubling of occurrence of extreme El Niños in unmitigated climate change

Summary

ENSO in a changing climate:

- Need to simulate right ENSO statistics for the right reasons (i.e. via correct processes)
- To understand if ENSO has changed, statistics will only help us in 200+ years. In the mean time we have to rely on physical understanding

Process-based metrics

Challenges in ENSO research

Better understand

- ENSO diversity and extremes
- Role of intra-seasonal variations
- Role of other oceanic basins
- Dynamics/physics interaction in the Tropics
 - Bjerknes feedback processes ?
 - WCRP Grand Challenge on Clouds, Convection and Circulation
 - CLIVAR Climate Dynamics Panel

Challenges in ENSO research

Process-based evaluation of ENSO in GCMs

- Apply during model development phase
- Collect (obs4MIP) and understand observation diversity (e.g. wind stress)
- Address model systematic errors
- Interpretation/synthesis of paleo records
 - Long records
 - Out-of-sample test of models

Tropical Pacific Observing System

TAO-TRITON instrumental in ENSO progress

- Unique resource for model evaluation and process understanding
- TPOS 2020 to provide recommendations for next 20 years of observations
- Unique opportunity for community
- Caution required about making fundamental changes

