Climate Outlook
AUSTRALIA October 2002 - March 2003
Issued: September 2002
The IRI has prepared this experimental Climate Outlook for Australia for
October 2002 - March 2003. Of relevance in the preparation of this
outlook is the prediction of warmer than average conditions in the
central and eastern equatorial Pacific for the next 6 to 9 months.
The sea surface temperatures (SSTs) across much of
the central equatorial Pacific are more than 1 degree C above
their long-term average
(SSTs),
and have been so for the last several months.
Weak warm SST anomalies for the central equatorial Pacific
are predicted by the coupled model throughout the forecast period
October-December 2002,
November-January 2003,
December-February 2003,
January-March 2003.
The climate forecasts, however, reflect an assumption that the magnitude of SST
anomalies in the central and eastern Pacific is more likely to remain near that
of the
recent observations, which are warmer than the SST predictions over the
tropical Pacific.
The recent observations show that the western Indian Ocean has been
becoming warmer than normal over the last month (not shown in our
statistical prediction), and those warm anomalies are expected to persist
or increase slightly through the forecast period.
The area of above-average temperature
in the equatorial Atlantic Ocean, observed in August 2002, has already returned to
normal. No substantial SST anomalies are predicted for the tropical Atlantic
for this forecast period.
METHODS -
This Outlook was prepared using the following procedures and
information:
A) Coupled ocean-atmosphere model predictions of tropical Pacific SST
covering the forecast period. Particularly heavy weighting has been
given to predictions from the coupled model operated by the NOAA
National Centers for Environmental Prediction, Climate Modeling Branch.
This model suggests a continuation of near-average conditions during the
first forecast season. The forecast for near-neutral conditions is
consistent with some, but not all, numerical and statistical forecasts
of central and eastern Pacific SSTs.
B) Forecasts of the tropical Indian ocean using a statistical model
developed by the IRI.
C) Global atmospheric general circulation model (GCM) predictions of the
atmospheric response to the present and predicted sea-surface
temperature patterns.
D) Other sources of information include
NASA's
Seasonal to Interannual Prediction Project (GSFC-NASA)
and also seasonal prediction research at COLA.
The procedures, models, and data used to derive this Climate Outlook may
be somewhat different from those used by the national meteorological
services in the region. Thus, this product may differ from the official
forecasts issued in those areas. The Climate Outlook for
October 2002 - March 2003
is dependent on the accuracy of the SST predictions. For the
tropical Pacific, these predictions can be expected to provide useful
information, but there is some uncertainty concerning the evolution of
SSTs. Spread in global SST predictions is a source of uncertainty in the
Outlook provided here. Note that even if perfectly accurate SST
forecasts were possible, there would still be uncertainty in the climate
forecast due to chaotic internal variability of the atmosphere. These
uncertainties are reflected in the probabilities given in the forecast.
It is stressed that the current status of seasonal-to-interannual
climate forecasting allows prediction of spatial and temporal averages,
and does not fully account for all factors that influence regional and
national climate variability. This Outlook is relevant only to seasonal
time scales and relatively large areas; local variations should be
expected, and variations within the 3-month season should also be
expected. For further information concerning this and other guidance
products, users are strongly advised to contact their National
Meteorological Services.
OUTLOOK -
This Outlook covers four seasons: October-December 2002,
November-January 2003, December-February 2003 and January-March 2003.
Maps are given showing tercile probabilities of
precipitation and temperature. The maps for precipitation indicate the
probabilities that the seasonal precipitation will fall into the wettest
third of the years (top number), the middle third of the years (middle
number), or the driest third of the years (bottom number). The color
shading indicates the probability of the most dominant tercile -- that
is, the tercile having the highest forecast probability. The color bar
alongside the map defines these dominant tercile probability levels. The
upper side of the color bar shows the colors used for increasingly
strong probabilities when the dominant tercile is the above-normal
tercile, while the lower side shows likewise for the below-normal
tercile. The gray color indicates an enhanced probability for the
near-normal tercile (nearly always limited to 40%). As before, numbers
and their associated histograms show the probabilities of the three
terciles. In areas with lots of spatial detail, there may not be
sufficient room on the map, to allow histograms for each region. In
those cases, some idea of the probabilities may be gained from the color
alone. A qualitative outlook of climatology ("C") indicates that there
is no basis for favoring any particular category.
Areas that are marked by "D" represent regions for which less than 3cm of
precipitation typically occurs over the season.
Otherwise, for example, in the case of
South Autralia in October-December 2002
(Map A),
there is a 40% probability that the precipitation will be
in the wettest third of the years, a 35% chance it will be in the
near-normal third of the years, and a 25% chance that the precipitation
will be in the driest third of the years.
Maps of temperature show expected probabilities that the seasonal
temperatures will fall into the warmest third of the years, the middle
third of the years, or the coldest third of the years
(Map A).
The numbers for each region on the temperature maps
indicate the probabilities of temperatures to fall in each of the three
categories, above-, near-, and below-normal.
An
additional precipitation map
is provided for the first season indicating probabilities for extreme
precipitation anomalies. Extremes are defined as anomalies that fall
within the top and bottom 15th percentile of the observed records. A
priori, there is a 15% probability of being within the extremely wet
category, and a 15% probability of being within the extremely dry
category, leaving a 70% probability that the precipitation will not be
extreme. The maps indicate areas of increased risk of extreme
precipitation totals. Three levels of increased risk are defined:
slightly enhanced risk, enhanced risk, and greatly enhanced risk. For
slightly enhanced risk, there is a 25-40% probability that precipitation
will be within the indicated extreme, i.e. wet or dry. This represents
an approximate doubling of the climatological risk. For enhanced risk,
there is a 40-50% probability that precipitation will be within the
indicated extreme. This represents an approximate tripling of the
climatological risk. For greatly enhanced risk, the probability that
precipitation will be within the indicated extreme exceeds 50%, i.e. the
indicated extreme is the most likely outcome. A similar map is provided
in the first season indicating probabilities of
extreme temperature
anomalies.
Boundaries between sub-regions should be considered as transition zones,
and their location considered to be only qualitatively correct.
October-December 2002 through January-March 2003:
The following discussion briefly describes the probability anomaly forecasts:
Precipitation
Enhanced probabilities for below normal precipitation are
forecast for mainly northeastern and northwestern portions of Australia
during most of the four forecast periods, extending northward into
Indonesia in most instances.
Enhanced probabilities for above normal precipitation appear only
during the first forecast period in southern Australia, and the
fourth forecast period in southeastern and western Indonesia.
Temperature
An enhanced probability for above normal temperature is indicated
for significant portions of Australia and Indonesia for all four
forecast periods.
However, an enhanced probability for below normal temperature is indicated
for mainly the last three forecast periods in central Indonesia as the
SST is expected to become below normal due to the El Nino.
OBSERVED CLIMATOLOGY DATA for Oct-Nov-Dec,
Nov-Dec-Jan, Dec-Jan-Feb and Jan-Feb-Mar
CLIMATOLOGICAL AVERAGE:
TERCILE THRESHOLDS (33%-ile & 67%-ile):
EXTREME THRESHOLDS (15%-ile & 85 %-ile):
|
Top
Back
|