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Analysis of Indian monsoon daily rainfall
on subseasonal to multidecadal time scales

using a hidden Markov model

A. M. Greené* A. W. Robertsofiand S. Kirshner

1 International Research Institute for Climate and Societ$A

2 University of Alberta, Canada

Abstract:

A 70-year record of daily monsoon-season rainfall at a netvad 13 stations in central-western India is analyzed usirdr
state homogeneous hidden Markov model (HMM). The diagnstates are seen to play distinct roles in the seasonal mérch o
the monsoon, can be associated with “active” and “break”snon phases and capture the northward propagation of divevec
disturbances associated with the intraseasonal osaiildtiterannual variations in station rainfall are fountémssociated with the
alternation, from year to year, in the frequency of occuresof wet and dry states; this mode of variability is wellvetated with
both all-India monsoon rainfall and an index charactegzime strength of the El Nifio-Southern Oscillation. An&ysf lowpassed
time series suggests that variations in state frequencseaponsible for the modulation of monsoon rainfall on nagtiadal time
scales as well.
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1 Introduction tool; this is a necessary step if such a model is eventually
to be deployed for precipitation downscaling or simulation
Owing to both its meteorological and economic SigniftHugheset al, 1999; Belloneet al, 2000). To the best of

cance, the Indian monsoon has been studied intensiv&IN knowledge HMMs have not heretofore been deployed

(e.g., Gadgil, 2003; Webstet al, 1998; Abrol, 1996; Rai, i, thjs regional setting; this renders the present invastig

2005; Gadgil and Kumar, 2006; Gadgil and Gadgil, 20063, hoth novel and of interest generally, with regard to the

In the present study, daily monsoon rainfall at a small ngfegnostic utility of such models in the monsoon domain.

work of stations is decomposed using a hidden Markov

model (HMM). The HMM is utilized here as@iagnostic

The HMM associates observed patterns of daily rain-

*Correspondence to: International Research Institute finade and . ) ) .
Society, Palisades, NY 10964 USA. E-mail: amg@iri.columsiiu fall with a small set of “hidden states,” which proceed in
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time as a first-order Markov precess (ttughes andrGiRasmusson c@yid:Carpenter, 1983; Shukla, 1987; Kpisfle 2 of 19
torp, 1994; Norris, 1997). It may be considered a parsiamurthy and Goswami, 2000; Kumaer al, 2006), the

monious description of the raw rainfall observations ageneral consensus being that strong El Nifio events have
alternatively, as a method of data reduction, by which thkended to be associated with weak monsoons, at least up
essential structural attributes of the complex obsermatiountil the late 1970s (Kumaet al, 1999). This linkage

data are represented by a small, therefore more comseexplored here through canonical correlation analysis
hensible, set of parameters. (CCA), applied to the occurrence frequencies of the diag-

nosed states and the station rainfall data. CCA is then

The HMM also provides a simple means of generat- . _ N
P P d extended, to examine multidecadal variability.

ing synthetic precipitation series that have some of the sta . .
Section 2 describes the datasets employed and Sec-

tistical properties (including spatial covariance) of tla¢a ) . o
tion 3 some climatological characteristics of the data. The

to which itis fit. Here, however, this is not the goal; in par- L . . . .
HMM is discussed in Section 4, while Section 5 exam-

ticular, the model employed includes only seasonal-mean ) ) . )
ines the hidden states in terms of associated atmospheric

transition probabilities, and is thus incapable of simuolat ] ) o
composites. Sections 6, 7 and 8 deal with intraseasonal,

the rise and fall of the seasonal cycle. However, once the ) S )
interannual and multidecadal variability, respectivedy;

hidden states are identified, their progression in time can ) ) )
discussion and summary follow, in Sections 9 and 10.

be recovered, and intraseasonal variability thereiag-

nosedlt is this diagnosis that lies at the core of the present

2 Data
work.

. . ) ) A 70-year record of daily rainfall at 13 stations, from the
Monsoon rainfall is highly variable both tempo-

i . . .. .. Global Daily Climatology Network (GDCN, Legates and
rally and spatially, in particular at the scale of indivitlua

) o . Willmott, 1990), constitutes the primary dataset. These
weather stations. The HMM is fit directly to the daily sta-

. . o L . stations were initially chosen to match, by name and
tion data without any filtering or gridding, yet is shown to

o . o location, a group of records for 1973—2004 that had been
capture characteristic features of rainfall variability@ss

. ) ) obtained from the Global Surface Summary of Day Data
a broad range of time scales. This suggests the existence of

. . L . (NCDC, 2002), with the thought that the two datasets
some mechanism that links variations occurring on these

. could be combined. However, given the reasonably long
different scales. It has been noted, for example, that the

) ] GDCN data series and their relative freedom from missing
“active” and “break” phases that characterize subseasonal

L ., ) values, as well as potential inhomogeneity issues, we
monsoon variability “add up” to produce interannual vari-

. . ) restrict our attention to this 70-yr record.
ations (Gadgil and Asha, 1992; Gadgil, 1995; Goswami

The GDCN dat th 1901-70, with a sta-
and Xavier, 2003; Goswami, 2005). It is thus of interest © ata span the years with & sta

. . tion average of only 11 missing days out of 8540, and
to see whether such aggregation might also play a role % g y 9 cay

. no station missing more than 29 days. The stations them-
decadal monsoon fluctuations.

selves are listed in Table | and locations shown in Fig. 1.
The link between the monsoon and the EI-NifiAlthough some regions, notably the eastern coast, are not
Southern Oscillation (ENSO) has also received attentisampled, atmospheric circulation composites (discussed
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Page 3 off¢fle | Stations whose records g utilized hereip, GoBimeiz Fgoyéllim@tt@dﬂg%gical Society

cate station number (corresponding to the ‘numbers showigin

1a), station ID as provided in the dataset, station naniwidat(CN),

longitude CE), climatological rainfall occurrence probability and

mean intensity (rainfall amount on wet days, defined as thate 3.1 Rainfall—spatial distribution
amounts> 0.1 mm).

No. ISTA  Name tat  Lon PR) I Figures 1a and 1b illustrate mean Jun—Sep climatological
1 5010600 Ahmadabad 23.06 7263 041 150 . o o ]
2 5100100 Veraval 2090 7036 043 110 rainfall occurrence probabilities and mean daily intensi-
3 5150100 Rajkot 22.30 70.78 0.35 13.7
4 5171200  Surat 2120 7283 056 153 i i i
e 11170400 I S 7680 084 131 ties (rainfall amounts on wet days), respectively, over the
6 11180800 Jabalpur 23.20 79.95 0.58 17.4 . ..

7 12040300 Auranpgabad 1085 7540 o049 102 Network. Topographic contours from the GLOBE digi-
8 12190100 Poona 1853 7385 058 7.2 _ .
9 12230300  Sholapur 1766 7590 041 109 tal elevation model (Hastings and Dunbar, 1998) are also

10 19070100 Bikaner 28.00 73.30 0.17 12.1
11 19131300  Jaipur 2681 7580 036 121 i i i ; i
12 22091900 Dol 2858 7700 030 160 shown. Both probabilities and intensities (also given in
13 23351200 Lucknow 26.75 80.88 0.43 17.1

Table 1), are computed conditional on a minimum daily
rainfall amount of 0.1 mm, the minimum non-zero value

recorded in the dataset.

In Fig. 1, high probability and intensity values along
the western coast reflect onshore flow, as shown in Fig.
in Section 5) suggest that this network captures enoukfh impinging on coastal orography (Gadgil, 2003). This
of the spatiotemporal variability of the precipitation flel orography can also produce sharp gradients in intensity, as
for the large-scale features of the monsoonal circulatiori$ the case with station 8. The high values at station 6, on
be quite well-inferred. Interannual variations in mean stée other hand, arise from convective systems propagating
tion rainfall are well-correlated-(= 0.86) with the Indian northwestward from the Bay of Bengal, reaching across
Summer Monsoon Rainfall (ISMR) index, an average 8fe classical “monsoon zone,” a broad belt extending
Jun—Sep rainfall over approximately 300 stations (Soacross the midsection of the subcontinent (see Fig. 5a
takkeet al, 1993). in Gadgil, 2003). Thepatternsshown on Figs. la and
1b are quite consistent with a high-resolutiort)(tata
set from the India Meteorological Department (IMD,
Atmospheric circulation fields are derived from thRajeevaret al,, 2006), including the low probabilities and
National Centers for Environmental Prediction-Nationaitensities to the north and north-west, (e.g., station 10,
Center for Atmospheric Research (NCEP-NCAR) reanding in arid Rajasthan), the high intensities at stations
ysis (Kalnay et al, 1996). Comparisons were madé and 13 in the main monsoon zone, and the south-east
between composites derived from this dataset and fréonnorth-west intensity gradient in going from stations
the European Centre for Medium-Range Weather Foe9 toward stations 1-4. Absolute amounts do differ
casts ERA-40 reanalysis (Uppala, 2001). Those from tb@mewhat, with the station data showing generally both
latter product were found to be somewhat noisier, perhdpgher occurrence probabilities and mean daily intersitie
owing to the shorter usable data length (period of ovenan enclosing grid boxes in the IMD product. The former
lap with the rainfall data, which is about half as long famay result from the masking of gridded values below 0.1
ERA-40). The NCEP-NCAR data were therefore utilizedam, the latter from gridbox averaging.
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Figure 1. Climatological (a) occurrence probability anyirttean daily intensity (mm) for Jun—Sep 1901-70.

3.2 Rainfall—seasonal cycle 4 Model description

Figures 2a and 2b illustrate the climatological seasonal
cycle for rainfall occurrence frequency and mean daﬁyl Basic structure and assumptions
intensity for each of the 13 stations, in terms of pentads.
Both variables exhibit a decided seasonal cycle at @lhe HMM factorizes the joint distribution of historical
stations. Station 10 again stands out for its relatively Iaaily rainfall amounts recorded on a network of stations
occurrence probabilities, although it clearly particgsin in terms of a few discretstates,by making two condi-
the seasonal cycle. It is less of an outlier in terms of me#onal independence assumptions: First, that the raiofall
intensity; this can be seen as well on the maps of Fig. 1a given day depends only on the state active on that day,
and second, that the state active on a given day depends
only on the previous day’s state. The latter assumption
33 Circulation corresponds to the Markov property; the states are con-
sidered “hidden” because they are not directly observable.
Figure 5a shows mean climatological Jun—Sep horizontal The state-associated rainfall patterns comprise a
winds at 850 mb and the 500-mb vertical velocity from probability distribution function (PDF) for daily rainfal
the NCEP-NCAR reanalysis, for 1951-70. Several wefbr each of the stations. In the present instance these are
known features of the monsoon circulation are evidenttilree-component mixtures, consisting of a delta function
the plot, including the cross-equatorial Somali jet alorig represent zero-rainfall days and two exponentials repre
the coast of Africa, the southwesterly to westerly flow isenting rainfall intensity. Mixed-exponential distribris
the Arabian sea, and ascending motian< 0) concen- have been found effective in the representation of daily
trated in maxima in the eastern Arabian sea and cenpatcipitation (Woolhiser and Roldan, 1982). Daily rain-
Bay of Bengal (Goswami, 2005; Xie and Arkin, 1996). fall, conditional on state, is represented as
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Figure 2. Climatological seasonal cycle of (a) occurremeguiency (days pentad) and (b) mean daily intensity (mm) for the 13-station
dataset, 1901-70. Occurrence is conditional on a thresiidld. mm.

4.2 Model selection and fitting

Pimo =0 The number of states to be modeled must be spedfied

PR =r[Se=i)={ &
Zpimc)\mce”m“ r>0 priori; differing objectives may lead to differing choices
! (1) in this regard. Use of a small number of states facili-
tates diagnosis and model comprehensibility, the object
where indices, m andc refer to state, station andof this study, while a larger number might be more suit-
mixture component, respectively, thg,. are weights and able for the generation of synthetic data. Models having
t is time. In the summatiory = 2, i.e., two exponentials three, four, five and eight states were examined in detail.
are utilized. Note that while rainfall at each station ©f these, the three-state model was determined to be sub-
characterized by a PDF that is both station- and stat@timal, particularly in relating the diagnosed statedo t
specific, the PDFs for all stations are coupled by state,paspagating convective disturbances characteristic ®f th
per thei subscripts in (1). Thus, the HMM accounts fointraseasonal oscillation (ISO, see Section 6.3). On the
spatial dependence in the data. There are HMM variantler hand, the five-state model does not add much to the
that model spatial dependence in more detail (Kirshreescriptions already present with four states and begins
et al, 2004), but we forgo the additional complexityo exhibit “state splitting,” the subdivision of attribte
involved in favor of a more easily interpreted model. F@mong states. Examination of the eight-state model con-
a more complete description of the HMM see Robertstirms the tendency for complexity, but not necessarily clar-
et al. (2004, 2006). ity, to increase with the number of states. The Bayesian
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4444 mean intensities that are small to moderate at all stations,
T while state 3, the “wet” state, exhibits relatively high
% 441
g occurrence probabilities and intensities. State 1 is also
4987 rather wet but shows a substantial south-west to north-east
435 gradient in mean intensity, while state 2 exhibits a north
2 4 6 8 10 12 14 16 18 20 . . -
Number of states to south gradient in both occurrence probability and mean

Figure 3. Bayesian information criterion (BIC) for modelsving intensity.

differing numbers of hidden states.

4.4 Transition matrix

Information Criterion (Schwarz, 1978) was applied to fit- o ) _ _
From a mechanistic (or generative) point of view, the

ted models having up to 20 states, (Fig. 3) and indicates N _ _ ) _
HMM transition matrix provides the stochastic “engine”

that overfitting does not occur when as many as 10 states )
that drives the system from state to state with the progres-

are modeled. For the illustrative purposes that are primary ) )
sion of days. Alternatively, and more importantly for our

here, a model having four hidden states was thus selected. _ o
purposes, the matrix can be regardediescriptive sum-

We show in the following sections that this model pro- ] .
marizing the temporal dependence of the observations in

vides a physically meaningful description of the monsoon o ] )
probabilistic form. The entry in row; columnj gives the

and its variability across a wide range of time scales. N = o
conditional probability of ari—j transition, i.e., the prob-

Parameter estimation was performed by the ) )
ability that tomorrow’s state will bg, given that today’s

maximum likelihood approach, using the iterative . ) .
is 7. The transition matrix for the 4-state HMM is shown

expectation-maximization (EM) algorithm (Dempster )
in Table Il. Note that the estimated 3—4 and 4-3 prob-

et al, 1977; Ghahramani, 2001). The algorithm was __ .
abilities are both null (actually nonzero, but at least 7

initialized 30 times from random starting points, the . )
orders of magnitude smaller than the other values in the

run utilized being that with the highest log-likelihood. ) ] »
table); in fact, no direct transitions between these two

Estimation was performed using the Multivariate ] .
states occur. This suggests that salgaamicalprocess

Nonhomogeneous Hidden Markov Model Tool-
has been encoded by the HMM, such that abrupt changes

box, developed by one of the authors (Kirshner, see ) .
between the intense endmember conditions represented by

http://www.cs.ualberta.ca/"sergey/MVNHMM/). i )

these two states are unlikely to occur in nature.

The largest values in the transition matrix lie along

4.3 Representation in terms of states _ ) ) .

the leading diagonal. Since these are the “self-transition
Figure 4 shows rainfall occurrence probabilities and meprobabilities (i.e., probabilities of remaining in the pes-
intensities for the 4-state model, the former derived frotive states from day to day), this feature signals a tendency
the p;mo parameter in Eq. 1, the latter from the medior all the states, to persist beyond the length of the sam-
values and weights of the mixed-exponential distributioring interval (one day). It is this tendency that accounts
The four states exhibit distinctly different patterns fotto for the horizontally banded appearance of Fig. 6a, the
variables: State 4, which might be characterized as thest-likely state sequence (see Section 6.1).
Copyright(© 0000 Royal Meteorological Society Q. J. R. Meteorol. So€0: 1-19 (0000)
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Figure 4. Occurrence probabilities (top) and mean dailgrisities (mm) for the 4-state model, states 1-4 shown frétrtoleight. Values
are computed conditional on a daily amount of at least 0.1 begend in leftmost figures applies to all plots in the respeabws.

The values shown in Table Il ateme-invariant,and series, can be determined. This is discussed in more detalil
in essence represent mean transition probabilities for the&Section 6.
entire Jun—Sep season. As will be seen, however, there is
a pronounced seasonal cycle in the relative frequencysof Atmospheric correlates

occurrence of the various states, implying that in actual-

. - Itis of interest to see how the modeled states are related to
ity the probabilities must be temporally modulated. This

o . the large-scale circulation, since the latter providesia pr
would clearly present a problem if it was desiredstm-

) _ mary control on rainfall. Figures 5b—5e show composited
ulate the rise and fall of the seasonal cycle, since static

- I ) .anomalies (with respect to the climatology shown in Fig.
transition probabilities can produce only stationary fain

_ _ 5a) for states 1-4, respectively, for the 4-state HMM.
fall series. However, once the states have been diagnosed,

. . Generation of these composites requires several
their relative frequency over the course of the season, and

o . steps. First, the raw daily rainfall values must be exprsse
thus the seasonal cycle, as it exists inabservedainfall P y P

in terms of the hidden states they represent. This is accom-

plished here by means of the Viterbi algorithm (see Sec-
Table Il. Transition matrix for the 4-state HMM. “From” sést . . . .
occupy the rows, “to” states the columns. Thus, e.g., theawiity tion 6), which returns a “most-likely” sequence of states,

of a transition from state 2 to state 4 is 0.056. . o . .
given the state definitions and transition matrix. Each day

. ;TO" Stat‘; . in the rainfall record is thus identified with its associ-
1 0798 0031 0.087 0.083 ated state. The days diagnosed as representing each of
“From” 2 0.059 0.776 0.109 0.056 .
state 3 0.160 0018 0823 0000 the states are then collected, with all the days represent-

4 0.022 0.101 0.000 0.876

ing state 1 placed in one group, the days representing state

Copyright(© 0000 Royal Meteorological Society Q. J. R. Meteorol. So@0: 1-19 (0000)

Prepared usingjirms3.cls http://mc.manuscriptcentral.com/qj DOI: 10.1002/qj



10

Eq

30 60 90 120

—_
19 ms

-0.14 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02 O 10.02 0.04 0.06 0.08 0.1 0.12 0.14

40

30

20

10

Eq

40

30

20

10

Eq

-0.04 -0.032 -0.024 -0.016 -0.008 0 ; 0.008 0.016 0.024 0.032 0.04
Pas-

Figure 5. (a) Horizontal winds at 850 mb (vectors, it sand 500-mb vertical velocity (colors, Pa’§ for the Jun—Sep mean climatology
for 1951-70. (b)-(e) Anomalies with respect to (a), foresat—4, respectively.

2inasecond group, and so on. The composites are formed State 3 (Fig. 5d), the wet state, is seen to be associ-
by taking the arithmetic average of the wind and verticated with anamplificationof the mean seasonal pattern,

velocity fields for each of these groups, then subtractiafpng with landward displacements of the two centers of
the mean Jul-Sep climatology (shown in Fig. 5a) to prascending motion that straddle the subcontinent. Anoma-
duce anomalies. lous cyclonic circulation is present over these centers.

There is also anomalous onshore flow from the Arabian

Copyright(© 0000 Royal Meteorological Society Q. J. R. Meteorol. So€0: 1-19 (0000)
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Page 9 ofsea, as well as an anticycloniocincelationto the southwégihennland sainfalbintensities.
of the Indian peninsula. These features are consistent with

the high occurrence probabilities and intensities on the

. Finally, state 2 (Fig. 5¢) shows anomalous easterl
western coast, extending toward the northeast, that char- Y (Fig. 5¢) y

. . . - inflow from the Bay of Bengal, resembling in this sense
acterize this state (Figs. 4e and 4f). In addition, the more y 9 g

. . the dry state. State 2 is also opposed to state 1 (cf. Fig.
or less zonal band of anomalous ascending motion can y PP ( g

. . . . 5p), in that there is now anomalous cyclonic activity, with
be identified with the often-described “monsoon trough,’p) 4 4

. associated rising motion, near the southwest coast, while
(see, e.g., Rao, 1976). Here, this band extends broadly?n d

L ._the north-central region shows anomalous descent and
a northwestward direction from the Bay of Bengal, lying

: . aticyclonic circulation. These properties, like thosthef
squarely over the monsoon zone as identified by Gad%?l 4 prop

. . ) _ other composites, are reflected in the maps of occurrence
(2003). This atmospheric configuration also correspond‘s P P

bability and intensity (Figs. 4 d 4d).
well with the dominant mode of intraseasonal variabi‘i)—ro ability and mean intensity (Figs. 4c an )
ity identified by Annamalaket al. (1999) via empirical

orthogonal function (EOF) analysis, and identified with Broadly speaking, the circulation anomalies associ-

the “active” monsoon phase (Goswami, 2005). ated with states 1 and 2 can be said to be similar to those

The composite for state 4 (Fig. 5e), the “dry” star@SSociated with 3 and 4, respectively, but weaker, and
is opposite in sense to that of state 3, with anomalofyith the regions of strongest anomalous ascent or descent
descenbver much of the subcontinent, and anticyclonfiSplaced to the north. States 1 and 3, with anomalous
circulation anomalies where state 3 presents Cydoﬁl@cending motion over the subcontinent, and in particular
ones. This pattern is consistent with the lower occurreri@§ monsoon zone, may both be considered “wet,” while

probabilities and intensities shown in Fig. 4g and 4h. Staté 2, with its anomalous descending motion, shows

stronger affinities to the dry state (state 4), most clearly
State 1 exhibits higher occurrence probabilities than

in the northern part of the domain.

state 3 for some stations in the northeastern part of the

domain; the band of anomalous ascending motion seen in

the corresponding composite (Fig. 5b), although config- Among the questions that naturally arise from inspec-
ured somewhat differently than in state 3, can still be seton of these figures is that of the relationship between
to correspond to the classical monsoon trough. Howewiie diagnosed states and the wet and dry intraseasonal-
the mean intensities here show a strgnadient(Fig. 4b), scale phenomena known as “active” and “break” phases
with values increasing from southwest to northeast. In thEthe monsoon. This question is taken up in Section 6,
composite we see anomalous anticyclonic circulation cetdeng with some other aspects of intraseasonal variabil-
trally located in the Arabian sea, while a single center f, as viewed through the prism of state decomposition.
anomalous ascent occurs near the northeastern part ofTthe rainfall patterns associated with the diagnosed states
domain, near the Himalayan escarpment. Thus, high pragpear, in any event, to correspond quite sensibly with
sure brings dry conditions to the coastal stations, whie tknown large-scale monsoon-related circulation regimes
anomalous ascent is located in a position consistent wi@adgil, 2003).
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o core of the rainy season, however, suggesting a possible
6.1 Viterbi sequence

association with monsoon breaks. Gadgil and Joseph
Once the parameters of the HMM have been estimat%OS) provide a listing of breaks for 1901-89, as defined

the most-likely daily sequence of states can be detB{/’ rainfall thresholds in the western and eastern sectors of

mined using the Viterbi algorithm (Forney, Jr., 1978Qhe monsoon zone. These thresholds were chosen in order

a dynamic programming scheme. The Viterbi SEqUENgfat there be a good correspondence between breaks so

which expresses the time evolution of rainfall PatterBfined and breaks as identified in a broad range of other

over the entire data period in terms of the hidden Statessfadies, so their listing can be considered representative

shown for the 4-state model in Fig. 6a. Figure 6b shows

the climatological sequence for 1901-70, accumulating Gadgil and Joseph identify an average of 8.8 break

days-in-state over the 70 years. days during Jul-Aug for 1901-70, while the average

Figures 6a and 6b reveal a systematic progressionnlunmber of dry-state days is 7.9. Standard deviations of the

Gadgil and Joseph and state 4 series are 6.3 and 7.4 days,
state occurrence over the course of the monsoon season.

During the first half of June, state 4, the dry state, dorQ]e_spectlvely. There are nine years in which the Gadgil and

inates, while during the core of the rainy season stat‘]eosSeph listing shows no break days, and in each of these

1 and 3 assume primary importance. State 2 playsyeaars there are no occurrences of the dry state. However,

quasi-transitional role, first appearing as a bridge bem/vetgere are five additional years in which the dry state does

dry and wet conditions in late June, almost disappeQP-t occur, in which Gadgil and Joseph do indicate breaks.

ing during the wettest part of the season, then returnilr?gt]erannual variations in the number of break and state-

in September, with increasing representation toward '[1!1edawS are highly correlated & 0.76, significant at the

end of that month. After mid-September the dry state on%‘e?OOl levelin a two-sided test).

again becomes dominant. Figure 6b also reveals a subtle Correspondence between tparticular days when
evolution of precipitation patterns during the core rainyeaks are diagnosed and those days when the Viterbi
season, with July favoring state 3 but a shift toward staigyorithm identifies state 4 can be expressed in the form
1in August. of a2 x 2 contingency table and evaluated by means of

Over the 70-year data period the four states occur g 2 test, either summing over years, or considering
an average of 34, 22, 30 and 36 days, respectively, durifg entire dataset as a single long sequence. In either
the 122-day Jun—Sep season, with standard deviatiggse, the number of overlapping days (332 for the 70-year
10.3, 7.9, 11.8 and 15.2 days, indicating consideraligquence) significantly exceeds the number expected by
interannual variability. Variability on longer time scale:nance alone (78), the test statistic being significantlat va
is also suggested by Fig. 6a. ues beyond software precision. A bootstrap test indicated

that this result has not been biased on account of serial

6.2 Monsoon breaks autocorrelation; we therefore conclude that there exists a
Figures 6a and 6b both show clearly the dominance lagh degree of correspondence between occurrence of the
state 4 during the early and late stages of the monsodMM dry state and monsoon break days.
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Figure 6. (a) Viterbi sequence of most likely states, 19@1{F) Corresponding daily climatology, accumulating daystate over the
70-year data period. Colors indicate states 1-4.

One characteristic break pattern defined by the IMD  Clues to this conundrum may be found in the amount
is described thus: “There are periods when the monsatbstribution, shown in Fig. 4b, and, somewhat more cryp-
trough is located close to the foothills of the Himalayascally, in the Viterbi sequence (Fig. 6a). In the former,
which leads to a striking decrease of rainfall over moatmounts in the southern part of the domain are seen
of the country, but increase along the Himalayas, partstofbe small compared to those in the north, consistent
northeast India and southern peninsula.” (cited in Gadgiith northward migration of the zone of intense rainfall,
and Joseph, 2003). With respect to the composites, thisile close examination of the latter reveals that nearly
situation would appear to correspond most closely to stateoccurrences of the dry state are preceded by state 1,
1, which shows a region of anomalous ascent located néespite the comparable prevalence of state 3 during Jul-
the Himalayan foothills (Fig. 5b). Rainfall occurrencéug (1693 and 1627 days for states 1 and 3, respectively).
probabilities for state 1, however, are uniformly modera€&iven these frequencies, it is striking that of the 88 state-

to high (Fig. 4a), quite different from those of the dry statd-diagnosed breaks, 81 are immediately preceded by state
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1, the remainder by state 2yuarterly Journal of the Robel identifiedowithalthe chseak phase. However, foPdlge 12 of 19
These observations suggest that state 1 may desclibeer two states there is little in the vertical motion field
a phasein the northward propagation of monsoon disouth of the equator (region not shown in these plots) to
turbances (Annamaladt al., 1999), occurring as a low-suggest deep convection. Thus, while some aspects of a
pressure trough reaches the Himalayan foothills but beforespondence between the state composites and the ISO
the anomalous large-scale sinking motion associated wsdem reasonably clear, the structure of the dry state does
state 4 has become established. This notion is corrobot appear to correspond in all particulars to the canonical
rated by the null probability of 3—4 and 4-3 state trandireak-phase description of Goswami and Mohan (2001).
tions, as discussed in Section 4.4. The HMM is sensitive not only to differing patterns
of rainfall occurrence and intensiper se,but also to the
6.3 Intraseasonal oscillation relative frequency with which these patterns are manifest.
Within-season monsoon variability has been describedTiRus, a distinctive pattern that occurred on only a very
terms of the so-called intraseasonal oscillation (Annémall number of days would tend to be subsumed into
malaiet al, 1999; Goswami and Mohan, 2001; Goswamy, state having greater representation among the obser-
2005), a quasi-cyclical behavior having a rather brogdtions. A propagating pattern would then most likely
spectral signature, but with principal activity in the 10-Zind expression in terms of its more temporally persistent
and 30-60 day bands (Goswami and Mohan, 2001). TpRases. Ghil and Robertson (2002) consider the relation-
centers of convective activity are involved, one extenghip between persistence, atmospheric states and oscilla-
ing along the monsoon trough, which is then charactésry modes in the context of a “wave-particle duality.” The
ized as a tropical convergence zone (TCZ) and extenfisdes, or “slow phases,” in their terminology, are thus
from the northern Bay of Bengal northwestward over thgore likely to be captured by the state descriptions.
Indian landmass, and a second lying in the Indian Ocean
between 0 and 10 S. The detailed time evolution of®-% Propagation of convective disturbances
the 1SO is apparently complex, consisting, according We focus here on the Jul-Aug core of the wet season.
Goswami and Mohan (2001) of “...fluctuations of thBuring these months the monsoon is fully active, the dry
TCZ between the two locations and repeated propagatperiods at the beginning of June and end of September
from the southern to the northern position. ..” Annamalbeing excluded. Transition probabilities for Jul-Augj-est
et al. (1999) in fact refer to the northward propagation ehated from the Viterbi sequence, are shown in Table IlI
convective activity as “nonperiodic.” In any event, the twcf. Table I, which applies to the entire Jun—Sep sea-
“phases” of the ISO, i.e., with convective centers of acti@on, and where transitions to the dry state from states 1
located over the two preferred zones, are to be ass@gid 2 are considerably more likely). We consider dffe
ated with the active and break phases of the monsoon,diegonal elements in this array, from which most-likely
northerly location corresponding to the active phase. sequences of states may be deduced. Exclusion of ele-
In light of this description, states 1 and 3 (Figsnents on the main diagonal is equivalent to considering
5b and 5d) can clearly be identified with the activenly transitions from one state todifferent state, thus
phase, while state 4, and to a lesser extent, state 2, ngapring self-transitions. Attention is thereby directied
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Page 13 0f 19 Tablelll. Jul-Aug transjtion probabililies a| of the My al Dthar@spegts of intrasgasonal variability

“To” state .
1 2 3 4 From Table Il it can be seen that another “preferred”
1 0847 0014 0.091 0.047 sequence consists of an alternation between states 1 and 3,
“From” 2 0.066 0.763 0.158 0.013
stale 3 0.132 0.009 0.859 0.000 and also that the 1-3 transition probability is about twice

4 0.050 0.106 0.000 0.844

that of 1-4. An alternation between states 1 and 3 is con-

the temporal patterns adfitraseasonablariability, rather sistent with the maintenance of generally heavy precipita-

than the daily transitions. tion during Jul-Aug, and the less-frequent excursions to

The most-likely sequence, thus defined, variSiate 4 with the occasional occurrence of breaks. Stochas-

according to which state is taken as the starting poiHE switching between these two transitional modes would

but if we think of the 1SO as described by Goswami aane consistent with the intermittent character of northward

Mohan, i.e., as an alternation between two centers of Cgﬁgpagation associated with the ISO, as described by both

vective activity (with propagation from south to north), Wénnamalalet al.(1999) and Goswami (2005).

can think of a complete “cycle” as extending from break A feature of interest in Fig. 6b involves the shift in

to break—a break occurring when the locus of convectigfminance, during the peak Jul-Aug period, from state 3

lies to the south of the equator. Beginning with a brei@ward state 1. This may reflect an increasing tendency

(state 4), the most-likely state sequence is then 4—2—3ioyard the dry state (nearly always preceded by state

Figure 7 shows composites of 850-mb relative vorticity Put never by state 3), and ultimately the end of the

corresponding to the wind fields of Figs. 5b-5e. Viewed [RiNY season itself, as July tums to August. Increasing

the 4-2-3-1 sequence, the plots show a northward IC%e_dominance of state 1 as the season matures may also be

gression of the band of positive vorticity, beginning, iiewed as a tendency, with time, for convection to occur

state 4, at the southern extremity of the subcontinent. TRI§ferentially in the more northerly reaches of the country
would be consistent with the northward-propagating dis-
turbances described by Goswami and Mohan (2001). 7 Interannual variations—Iinfluence of ENSO
The Markov chain, of course, follows somaxture
of all the paths permitted by the transition matrix; thuFhe four-state model comprises two “wet” and two “dry”
there is considerable stochastic variability in the actusthtes, with states 3 and 4 the more intense in these two
progression of states. Nevertheless, the 4-2—-3—1 pattettegories, respectively, and 1 and 2 the more attenuated.
is frequently found intact in the Viterbi sequence. Over the course of a full season, the number of days
In summary, much in the state composites is consgpent in each of the states can thus signal relatively wet
tentwith the 1SO, as it has been variously described. Hoor- dry years; the unfolding in time of these variations
ever, it should be remembered that the states are not @astitutes what we would call interannual variabilityt bu
ular snapshots in time, constrained to follow one anoth®w expressed in terms of frequency of occurrence (FO)
in a deterministic order. Furthermore, the data have mdtthe model’s hidden states. These occurrence frequen-
been filtered to retain only ISO-band variability, and thuges, which apply to the station network as whole, may in
contain information about all time scales. turn be thought of as representing interannual variations i
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Figure 7. Relative vorticity anomaly composites for thetdtes mo?el, states 1-4 shown in panels (a)-(d), respectieits are10~°

s .
the large-scale circulation. (Indeed, this has been demon- The relationship between FO and station rainfall
strated in Section 5.) On the other hand, the states ea@not be considered for each of the states separately,
related to the station rainfall through the structure of thecause FO need not (indeed, cannot) vary independently
HMM. Thus, state FO links the large spatial scale of tteenong states. In addition, there exists the possibility
circulation fields with the small scales of station rainfalthat within-state variation (changes in the character of

This linkage is explored in what follows. the states), if systematic, could cause station rainfall

The number of days in a given year assigned ygriations to diverge from what variations in FO alone
each of the states may be computed from the vitemgpuld lead us to expect. Canonical correlation analysis
sequence. Correlation coefficients for the four frequend§=CA, see, e.g., Wilks, 2006) offers a means of addressing
of-occurrence (FO) series thus obtained and the NINO#¥se potentially confounding aspects of the FO-rainfall
index (Barnstoret al, 1994) are -0.18, -0.16, -0.45 andinkage, and is thus employed here in order to characterize
0.56 for states 14, respectively. The first two of these vi1at relationship.
ues are not statistically significant (two-sided test) neaie CCA identifies pairs of patterns across two fields,
alevel of 0.10, while the latter two prove significant at besuch that the temporal correlation between members of a
ter than 0.001 (on 68 d.o.f.) This indicates a tendency foair is maximized. The original variables can be projected
El Nifio (La Nifia) years to be associated with increasedto the diagnosed patterns to estimate the degree to
FO of the dry (wet) state, consistent with the sense which the actual behavior of the fields is captured by
the historical ENSO-monsoon relationship. The NINO3them. In the CCA performed here, the method of Barnett
index is also anticorrelated with the ISMR £ —0.63), and Preisendorfer (1987), in which the original data are
indirectly linking FO to this broad-scale metric. Theskrst expressed, or “filtered,” in terms of EOFs, is utilized.
relationships confirm the large-scale character of state iron et al. (2007) have performed a similar analysis, as
as would be expected from the results of Section 5. part of an investigation of Senegalese rainfall.
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Page 15 of 19The two “fields” analyzeg, gach having anntah yvabdgitionalcconfirmatiorsthat the HMM state decomposi-
ues, are the state FO series and the mean daily station, based on only a 13-station network, has captured
rainfall amounts. Initially, all series are filtered to remeo patterns that are implicitly descriptive of this broadlp+e
decadal and longer-period variability. This is done by firstsentative index.
generating smoothed versions of the series, using 11-yr Potential utility of the HMM as a predictive down-
running means. These smoothed versions are then sgaling tool was tested for the interannual case by attempt-
tracted from the original series, leaving the shortergakriing to forecast precipitation over the station network for
variations as a residual. The Kolmogorov-Smirnov test digich year, using a CCA fitted to the remaining data years.
not lead to a rejection of the null hypothesis of normalitghe four FO series were utilized as predictors, and all
for any of the resulting state or station series; CCA wdsree significantly correlated CCA modes, which together
thus applied without any transformation of variables. explain 60% of the station rainfall variance, were utilized

The correlation between observed and cross-validated

Figures 8a and 8b illustrate, respectively, the FO afiftecast station rainfall series was 0.490.13 (1), and

station rainfall patterns corresponding to the leading@noghe mean RMS error 1.7 mm, or 30% of the seasonal mean
of covariability. The correlation between the two canongaily amount (averaged over both stations and years). For
cal variates for this mode is 0.92, while the patterns thefie stations with higher correlations this representsrpote
selves explain 48% of the variance of the FO field afi@lly useful forecast skill. It should be kept in mind, how-
33% of the variance of the rainfall amounts. A Montgver, that these measures assume a perfect forecast of the
Carlo significance test that involves scrambling the tingate frequencies, which will not be the case in practice.
indices while retaining spatial field structure indicatestt
the correlation value is significant at better than 0.00® TQ Multidecadal behavior
next two modes also have significant correlation coeffi-
cients and explain 14% and 12% of the rainfall variandeigure 9 shows the smoothed FO time series, in which
respectively. Thus, the leading CCA mode on subdecagidbdecadal variability is suppressed. Series for states 1
time scales consists of aalternation between states 3and 2 do not exhibit marked long-term trends, although
and 4, the wet and dry states, coupled to a rainfall pgecadal variations are evident. Series for states 3 and 4
tern in which mean seasonal amounts change in the safagd in opposite directions, however, the former increas-
sense at all stations, becoming wetter (drier) when sté@- This tendency, of states 3 and 4 to vary in opposite
3 (4) predominates. From the HMM perspective, thefenses, also characterizes decadal variations, and ssigges
ENSO modulates monsoon rainfall through the agencyssmilarities with the interannual case.
the state frequencies, producing lower (higher) counts for Figures 8c and 8d show the first canonical patterns
state 3 (4) in El Nifio years, vice versa for La Nifia yearor the smoothed data, which are seen to be similar to

those for the interannual series. The first three correla-

The leading canonical variate time series for the R@ns are also significant (at 0.001) in this case, and explai

series is well-correlated with the ISMR index=£ 0.81, 52%, 24% and 7% of the station rainfall variance, respec-
significant at better than 0.0001). This can be taken tagly. The smoothed ISMR is also well-correlated with
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the first FO canonical variate & 0.85, p-value of 0.015 station rainfall distributions and various monsoon fea-
for a two-way test on 5 d.o.f.), so an appreciable fractitares (large-scale atmospheric flow, ISO, all-India mon-
of the decadal variance can be related to the state frequsaen rainfall, ENSO interaction, longer-period variak)li
cies, even though the states themselves are diagnosed inditate that this description contains much information
respect to daily data. Thus, it appears that decadal vadheut real physical processes.
tions of the ISMR amount in part to an aggregation, over Well-defined atmospheric modes corresponding to
many years, of wet and dry states. This can be viewg states are consistent with both the state rainfall este
as an extension of the intraseasonal-interannual relatipnl the large-scale structure of the monsoon. This corre-
identified by Goswami and Mohan (2001). spondence may owe something to the fact that the mon-
soonis a large-scale phenomenon, whose modes might be
accessible in this way from any similar network meeting
9 Discussion

some minimal sampling requirement.

It was shown that year-to-year fluctuations in the

The homogeneous HMM is utilized herein as a dlagnOSHFst CCA mode, representing inverse variations in the

tool, and provides a compact description of daily rair'l_.—o of states 3 and 4, play an important role in monsoon

fall variability over the station network. The relationghi variations on even decadal time scales. The possibility tha

detailed, between variations in FO of the diagnosed Sta&?\%’re are, in addition, low-frequency modes of variability

whose expression is similar to the behavior that is here
50

State 1

attributed to the aggregation of wet and dry states over

401 decade-length periods cannot be ruled out. However, such

modes are not amenable to discovery through the agency

Days in state

of the HMM.

20

1900 1920 1940 1960 10 Summary and Conclusions

Year

Figure 9. Time evolution of filtered state occurrence freges. A homogeneous hidden Markov model is applied to daily
Series shown are 11-yr moving averages. Units are dayie-s

during the 122-day Jul-Sep monsoon season. Indian monsoon rainfall on a network of 13 stations in

Copyright(© 0000 Royal Meteorological Society Q. J. R. Meteorol. So@0: 1-19 (0000)

Prepared usingjjrms3.cls http://mc.manuscriptcentral.com/qj DOI: 10.1002/qj



Page 17 o¥asgi-central India, for the yearsel801si0.aThe tHMMaviations do state £@. This eliagnosis, which has not been
associates patterns of rainfall received at the statiotts whade previously, differs from that of Moraat al. (2007)
a set of hidden states, that progress in time as a first-ordéh respect to Senegalese rainfall, in which decadal vari-
Markov process. For the purposes of the present workalality was found to be primarily a consequence of within-
model having four hidden states is found to be optimakate variation, while interannual variability was more
in that it captures sufficient detail to represent essentilongly influenced by FO.
features of monsoon variability, while retaining adequate A preliminary experiment utilizing the diagnosed FO
interpretive simplicity for the purposes of the presestries as predictors suggested that the HMM may prove
exposition. To the best of our knowledge, application abeful in this regional setting as a statistical downscglin
a statistical model of this type in the Indian monsoanol, although better quantification awaits further ini:est
domain has not previously been attempted. gation. A related application, in an area of research that

) .. has received increasing attention of late, is the generatio
The diagnosed states were found to play distinct

) of weather-within-climate data, in the context of long-
roles in the seasonal march of the monsoon, and the

. ) ) range climate change studies. The model validation pre-
associated atmospheric composites to correspond sensi-

) ] o . sented here represents an important step toward the real-
bly with state rainfall characteristics. Episodes of digts

. ) ization of these applications.
occurrence during the peak rainy season were shown to

correspond well with independently diagnosed monsoon

breaks, while detailed analysis of the time evolution 6cknowledgements
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