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Abstract. Extended empirical orthogonal functions
(EEOFs), alternatively known as multi-channel singu-
lar systems (or singular spectrum) analysis (MSSA),
provide a natural method of extracting oscillatory
modes of variability from multivariate data. The eigen-
functions of some simple non-oscillatory noise proc-
esses are, however, also solutions to the wave equa-
tion, so the occurrence of stable, wave-like patterns in
EEOF/MSSA is not sufficient grounds for concluding
that data exhibits oscillations. We present a generalisa-
tion of the “Monte Carlo SSA” algorithm which allows
an objective test for the presence of oscillations at low
signal-to-noise ratios in multivariate data. The test is
similar to those used in standard regression, examining
directions in state-space to determine whether they
contain more variance than would be expected if the
noise null-hypothesis were valid. We demonstrate the
application of the test to the analysis of interannual
variability in tropical Pacific sea-surface temperatures.

1 Extended EOFs and reduced principal components

Standard principal component analysis, or PCA (Lor-
enz 1956; Jolliffe 1986), involves sliding a wide, flat
window (length and width 1!L) over each field in a
dataset d which consists of N fields each containing L
datapoints (dts: tp1,N; sp1,L) and identifying spatial pat-
terns (commonly known as EOFs) which account for a
high proportion of the variance in the N views of the
dataset thus obtained. Equivalently, PCA can be de-
scribed as sliding a narrow, long (N!1) window across
the input channels and identifying high-variance tem-
poral patterns (PCs) in the corresponding L views.

Since the signals of interest to climatologists often
persist in time, a logical generalisation of standard
PCA is to extend the spatial window to include ele-
ments of d at times tc1, tc2, up to some user-speci-
fied maximum lag, tcMP1 (for consistency with pre-
vious authors, we use M to refer to the number of lags
included in the lag-window and L for the number of
channels). We thus replace our 1!L window with an
M!L window and search for spatio-temporal patterns
which maximize variance in the NbpNPMc1 over-
lapping views of d thus obtained. This is the extended
EOF algorithm, early applications of which include
Barnett and Hasselmann (1979) and Weare and Nas-
trom (1982). EEOF analysis is equivalent to perform-
ing conventional PCA on an augmented dataset, D
(Dij: ip1,Nb; jp1,LM), which consists of M lagged copies
of d arranged thus:

DijpdiclP1, s . (1)

The index i indicates window position (specifically, the
time coordinate of the earliest points in the window)
while j indicates position within the lag-window:

jplcM(sP1) , (2)

where lP1p0, MP1 corresponds to time-lag from the
beginning of the window and sp1,L corresponds to
spatial position or input channel number. The ele-
ments of D correspond exactly to those in a three-
dimensional array with indices i, l, s arranged in the
conventional manner, showing how lag plays the role
of an additional spatial dimension in EEOF analysis.

The singular value decomposition of D,

Dph PD LD
1/2ET

D , (3)

where LD is diagonal and h is a convenient normalisa-
tion equal to the larger of Nb and ML, yields a set of
orthonormal vectors of rank ML (the columns of ED)
and a second set rank Nb (the columns of PD). Various
names have been used in the literature to refer to these
vectors, including extended EOFs and PCs, temporal
EOF/PCs and spatio-temporal EOF/PCs. Since stand-
ard PCA is a special case of EEOF analysis with Mp1,
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we will use EOFs and PCs to refer respectively to all
spatio-temporal patterns and timeseries of coefficients
obtained in this way, making clear as necessary wheth-
er or not M`1.

In introducing Eq. (3) above, we followed the usual
approach to EEOFs, stressing the idea of augmenting
the spatial window to search for high-variance spatio-
temporal patterns in Nb views through an M!L win-
dow. An equally valid description of the algorithm is
reducing the length of the PCs found in standard PCA
from N to NbpNPMc1, and searching for high-var-
iance temporal patterns in ML views through a win-
dow with dimensions Nb!1. Thus we can think of the
algorithm as identifying dominant spatio-temporal
modes of variability (the EOFs) each of which involve
a number of channels, or we can think of it as identify-
ing purely temporal patterns (the PCs) which explain a
high proportion of the variance in lagged copies of the
individual channels without explicitly making use of
cross-channel covariances. The fact that this comple-
mentary window is always one-dimensional proves use-
ful in formulating a significance test for EEOFs.

Broomhead and King (1986) noted that the basic
EEOF algorithm could be used to examine the qualita-
tive dynamics of chaotic systems in noise-contaminated
experimental data. Drawing on the signal-processing
literature, they refer to the algorithm as singular sys-
tems analysis (SSA), generally qualified as multi-chan-
nel (MSSA) when L`1. Vautard and Ghil (1989) and
Vautard et al. (1992) further developed the single-
channel version of SSA, while MSSA has recently been
implemented in the analysis of laboratory (Read 1993),
meteorological (Keppenne and Ghil 1993; Plaut and
Vautard 1994) and oceanographic (Jiang et al. 1995;
Unal and Ghil 1995) data, as well as in the interpreta-
tion of results from climate models (Robertson et al.
1995a; Robertson 1996; Zorita and Frankignoul
1996).

An important property of SSA, first noted by Vau-
tard and Ghil (1989), is that it may be used directly to
identify modulated oscillations in the presence of
noise. In the single channel case, any view of an oscil-
lation through a window of width M can be described
completely in terms of only two vectors, a sine and co-
sine with periods equal to the oscillation, provided the
period is less than M and time scales of amplitude- and
phase-modulation are much greater than M. Thus, if
the variance of a series is dominated by such an oscilla-
tion, SSA will generate a pair of sinusoidal EOFs p/2
out of phase with each other. Likewise, in the multi-
channel context, a stationary or propagating oscillatory
mode can be represented by EEOF/MSSA as two spa-
tio-temporal patterns which are sinusoidal in time and
p/2 out of phase (Plaut and Vautard 1994).

Unfortunately, such sinusoidal EOF-pairs are also
generated by finite realisations of a number of non-os-
cillatory processes (such as first-order autoregressive –
AR(1) – noise) so their occurrence does not unambi-
guously indicate an oscillation. This problem led to the
development of the formal Monte Carlo significance
test for single channel SSA documented in Allen

(1992), Allen and Smith (1994) and Allen and Smith
(1996). Similar problems also occur in the multi-chan-
nel context, discussed in the following section, again
prompting the need for a formal test which is the ob-
jective of this study.

2 Stable patterns due to noise

Why should we be concerned that an ostensibly stable
and apparently oscillatory pattern (or pair of patterns)
which we find in our data might in fact be attributable
to noise? The eigenbases PD and ED in Eq. (3)
are the eigenvectors of the lag-covariance matrices

C(P)
D {

1
ML

DDT and C(E)
D {

1
Nb

DT D respectively,

with the k th diagonal element of LDpPD
T CD

(P) PD

(pET
D C(E)

D ED) being proportional to the power in the
k th PC (EOF). Except in the near-singular case of
NbpML, only the smaller of these matrices is full-rank
(even this smaller matrix may be rank-deficient if the
data is completely noise-free, but this situation need
not concern us here). The eigenbasis of the larger ma-
trix is necessarily underdetermined, with large num-
bers of its eigenvalues identically zero. To appreciate
how physical-looking patterns which are stable be-
tween process realisations can be obtained from pure
noise, it is helpful to break the algorithm down into
three steps: we estimate the smaller of the two covar-
iance matrices; diagonalise it to obtain a complete ei-
genbasis (PCs or EOFs); and then obtain the incom-
plete basis (EOFs or PCs) by projecting D onto the
complete basis.

2.1 Stable PCs

The most commonly encountered situation when deal-
ing with short time series, Nb~ML, is also conceptual-
ly the simplest. The elements of C(P)

D are given by

C(P)
Dij p

1
L

L

A
sp1

3 1
M

M

A
lp1

diclP1, s djclP1, s4 . (4)

The term in square brackets is an estimate of the auto-
covariance of channel s lagged by iPj in time. Thus the
ij th element of C(P)

D is simply the average of the ij th ele-
ments of L individual Nb!Nb single-channel lag-cov-
ariance matrices each of rank M (assuming M~Nb).
Recall the point made already concerning the one-di-
mensional complemetary window in EEOF/MSSA: no
cross-channel covariance information is used in the es-
timation of C(P)

D .
Suppose d is generated by a set of independent

AR(1) processes (red noise) in which temporal auto-
correlation decays exponentially with increasing lag in
each of the channels and the lag-1 autocorrelation in
channel s is given by gs:

utspgs utP1, scas zts , (5)

where c0spa2
s/(1Pg2

s) is the variance in channel s and
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zts is a unit-variance gaussian white noise. In this exam-
ple,

(C(P)
Dij)p

1
L

L

A
sp1

c0s ghiPjh
s , (6)

where  is the expectation operator. Since no cross-
channel covariance information is used in the estima-
tion of C(P)

D , the fact that the individual channels are
mutually independent in Eq. (5) has no impact on the
RHS of Eq. (6).

The eigenvectors of this matrix are sinusoidal so,
despite the fact that this is a non-oscillatory input proc-
ess, it will generate sinusoidal PCs. In the many-chan-
nel, large-window limit (NbPML), with c0s and gs the
same in all channels, each PC will be associated with a
single frequency, with the lowest frequencies corre-
sponding to the largest eigenvalues, and the frequen-
cies of adjacent PCs separated by 1/2Nb (Vautard and
Ghil 1989).

Orthogonality constraints coupled with the pres-
ence of a strong signal such as a trend or annual cycle
can, however, force PCs which are not associated with
any signal to form sine-cosine pairs (Allen 1992) and
thus be mistakenly identified as an oscillation. Sam-
pling fluctuations also cause PCs to pair up, for the fol-
lowing reason. We obtain the PCs by moving the one-
dimensional complementary window a distance M over
each channel. Chance fluctuations in a finite sample
will always mean that there will be more power (but
not significantly more) than the process average in
some sinusoidal patterns for any position of this com-
plementary window. The sliding window ensures that
we are also likely to find such anomalous power in
those same patterns phase-shifted by p/2 (Allen and
Smith 1996). Thus, we should expect to obtain pairs of
sinusoidal PCs p/2 out of phase with each other
through chance fluctuations in a non-oscillatory red
noise process. The presence of such a PC-pair is not
sufficient grounds to conclude that the data exhibits an
oscillation. Because red noise projects more variance
onto the lowest frequencies, low-frequency PC-pairs
which are entirely due to noise will appear high in the
eigenvalue rank-order.

2.2 Stable EOFs

By definition, EOF-k is the projection of the aug-
mented dataset D onto PC-k. Thus if PC-k and PC-
kc1 are a pair of sinusoids in quadrature, EOF-k and
EOF-kc1 will also be sinusoidal in time p/2 out of
phase. Sinusoidal PCs in a sliding window act as nar-
row-band filters, so the temporal structure of EOFs ob-
tained by the EEOF/MSSA algorithm, and any recon-
struction of the data based on a small number of PCs,
will necessarily look like an oscillation. The probability
of generating sinusoidal EOFs and PCs is enhanced if
we use the algorithm described in Plaut and Vautard
(1994) to impose Toeplitz structure on the lag-covar-
iance matrices (we do not do this in any of the exam-
ples shown here). The reason for this is that the eigen-

vectors of the Toeplitz matrix are necessarily either
symmetric or anti-symmetric and converge either to-
wards pure sinusoids or towards discrete Legendre po-
lynomials (depending on the properties of the generat-
ing process) in the long series/short window limit (Gib-
son et al. 1992).

We therefore expect the temporal structure of
EOFs to be stable between process realisations even if
they are due to noise. But what if their spatial structure
is also stable? This, unfortunately, is equally inconclu-
sive. Suppose, for example, the c0s and gs are different
in the different channels in Eq. (5). Different channels
may dominate variance on different time scales (think
of a superposition of exponentials with different inter-
cepts and decay times). In this case, the expected chan-
nel-dependence (spatial structure) of each EOF will
simply be a unit vector centred on the channel which
contributes most variance at the time scale picked out
by the corresponding PC. This channel-dependence
will be stable between realisations of the generating
process.

A common check on the robustness of results from
EEOF/MSSA is to split the dataset in two and com-
pare results obtained from the two halves indepen-
dently. Quite apart from the undesirable subjectivity of
a test based on pattern-similarities, sinusoidal EOFs
and PCs may be perfectly stable even if they are gener-
ated by pure noise.

Similar arguments apply in the case ML~Nb, al-
though cross-channel covariances now play a larger
role. The elements of C(E)

D are given by

C(E)
Dij)p

1
Nb

Nb

A
ibp1

dibcl1P1, s1
dibcl2P1, s2

(7)

with i (l1, s1) and j (l2, s2) defined as in Eq. (2) above.
Thus (C(E)

Dij) is the covariance between channels s1

and s2 lagged by l1Pl2 in time. If the channels are mu-
tually independent at all lags, then (apart from possible
rotations due to degeneracies) the channel-depend-
ence of the EOFs will again be the unit vectors, while
their time-dependence [for an AR(1) process in the
long-series limit MLPNb] will be sinusoids with asso-
ciated frequencies separated by 1/2 M. Sampling fluc-
tuations can, however, cause EOFs to pair up at fre-
quencies not associated with any signal. If the channels
all have equal variance but are not independent, with
cross-channel correlations declining exponentially with
separation, then the EOFs will appear as solutions to
the two-dimensional wave equation in an M!L do-
main (Thacker 1995). Again, we have stable wave-like
patterns with high-ranked eigenvalues being generated
by a non-oscillatory process.

Another common method of evaluating the robust-
ness of an oscillation is to estimate its damping time,
which may be thought of as the e-folding time of ampli-
tude- and phase-modulation. If this damping time is
greater than or comparable to the period then the os-
cillation is regarded as genuine. Extreme caution must
be used in interpreting the damping times of signals re-
constructed using the EEOF/MSSA algorithm. A slid-
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ing-window-based reconstruction is, by construction,
an order-M moving-average (MA) process, so it will
necessarily have an e-folding time at least comparable
to M regardless of the true e-folding time of the un-
derlying process (Box and Jenkins 1976).

Plaut and Vautard (1994) stress the difficulty of
testing the statistical significance of individual EOFs
and PCs in MSSA, and recommend that the technique
should always be used in conjunction with convention-
al Fourier techniques. The preceding discussion sup-
ports the conclusion that informal significance tests are
likely to be misleading. Our aim in this study is to de-
monstrate that it is possible to formulate an objective
significance test within the framework of EEOF/
MSSA. While we do not, of course, recommend com-
plete reliance on any single statistical test, this should
enhance the utility of the EEOF/MSSA algorithm in
signal detection applications.

We have found that the sinusoidal appearance of a
(pair of) pattern(s) and/or its stability between realisa-
tions are not sufficient grounds to reject the hypothesis
that it is entirely attributable to non-oscillatory sto-
chastic processes. The standard practice of “truncating
the eigenspectrum” (retaining only the EOF/PCs cor-
responding to the largest eigenvalues) is also invalid as
a method of separating oscillatory signals from non-os-
cillatory noise, since low-frequency EOFs and PCs
which are entirely due to noise may have high-ranked
eigenvalues. Instead, we base our procedure, previous-
ly outlined in Robertson et al. (1995b), on this simple
question: does this pattern contain more variance than
we would expect if the data were generated by noise?

3 An objective hypothesis-testing procedure

3.1 Specifying the null-hypothesis

The test we propose can be applied to a wide range of
null-hypotheses. Following the surrogate data ap-
proach to the analysis of non-linear systems (Smith
1992; Theiler et al. 1992), our main requirement is that
it should not be possible to reject the null-hypothesis a
priori or by the application of a trivial statistical test.
The white noise null-hypothesis, for example, is gener-
ally unsuitable for geophysical problems, since few
geophysical systems are capable of generating white
noise output (Hasselmann 1976). Moreover, the hypo-
thesis of no temporal or spatial correlation can gener-
ally be rejected by simple inspection of most geophysi-
cal datasets (Livezey and Chen 1982). Thus rejection
of the white noise hypothesis through the application
of a sophisticated statistical test provides us with no
new information.

As a demonstration, we focus on a particular null-
hypothesis which is appropriate when the L input
channels are variance-weighted PCs obtained from
standard PCA. Pre-filtering with standard PCA is a
common procedure in EEOF/MSSA (Plaut and Vau-
tard 1994) which becomes computationally essential
when large datasets are involved. At present, we have

no formal check that the signals of interest are com-
pletely described by the L highest-variance PCs ob-
tained in standard PCA so we simply vary the number
of PCs retained to ensure that results are insensitive to
this parameter.

The L input channels are pairwise uncorrelated at
lag-0, since the PCs of standard PCA are mutually or-
thogonal. If, as in many applications, the data being
analysed consist of anomalies about a climatology con-
sisting of statistical means derived from the input data,
the input channels will also be centred (i.e. sample
means will be zero by construction). Our null-hypothe-
sis, therefore, is that the data have been generated by
L independent AR(1) processes, being the model (5)
with the as and gs chosen such that the uts, after centr-
ing the individual channels, have the same variance
and time-lag-1 autocorrelation as the centred input
channels, dts. It is important to take into account the
effect of centring if we are dealing with anomaly data,
since failure to do so increases the probability of incor-
rect detection of spurious low-frequency oscillations in
pure noise (Allen and Smith 1996).

We focus on the null-hypothesis of L independent
AR(1) processes because, following the philosophy of
surrogate data testing, it reproduces basic linear statis-
tics of the dataset while being incapable of supporting
the behaviour which we are interested in detecting (os-
cillations). We wish to minimise the probability of re-
jecting the null-hypothesis for the wrong reason, but
we also want to maximise the chance of rejection if the
data does in fact display oscillations. For this reason,
the null-hypothesis of an L-channel multivariate
AR(1) process is inappropriate. A multivariate AR(1)
process can itself support oscillations (this is, indeed,
the principal oscillation pattern model: von Storch et
al. 1995) so it is inappropriate as a null-hypothesis in a
test for oscillatory behaviour.

The key advantage of using PCs from standard PCA
as input channels dts is that it provides a natural way of
taking into account the fact that temporal autocorrela-
tion tends to be spatial-scale-dependent in geophysical
timeseries: large-scale patterns tend to have long de-
correlation times, even for non-oscillatory processes.
Because of this fact, it is generally easy (and uninter-
esting) to reject the null-hypothesis that the dts are in-
distinguishable from a set of AR(1) processes with a
uniform decorrelation time.

3.2 Formulating the test (I): using the PCs and EOFs
of the data

Having formulated a model of the null-hypothesis we
generate a large ensemble of surrogate data segments,
u, each with the same length and number of channels
as d. If Nb~ML (Nb`ML) we compute, for each surro-
gate segment, the lag-covariance matrix CR

(P) (CR
(E)) and

the matrix of projections LR{PT
D C(P)

R PD (ET
D C(E)

R ED).
The k th diagonal element of LR indicates the power
in the state-space-direction defined by the k th PC
(EOF) in this surrogate segment. Note that
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(tr (LR))ptr (LD). This is the reason complete eigen-
bases must be used throughout, since if we used the
incomplete basis, all data variance would be concen-
trated in the highest ML (Nb) PCs (EOFs), whereas
surrogate variance would also be distributed over
other eigen-directions.

We store the diagonal elements of the LR and com-
pute their distribution statistics by summing over the
surrogate ensemble. If the k th diagonal element of LD

is larger than 97.5% of the k th diagonal elements of the
LR, we would conclude, at the 97.5% confidence level,
that there is more power in d in this state-space-direc-
tion (PC or EOF) than we would expect on this null-
hypothesis.

Following standard practice in spectral analysis
(see, for example, Thomson 1990), we quote confi-
dence levels appropriate to the local tests of the indi-
vidual PCs or EOFs, but it should be born in mind that
we expect an average of 2.5% of the diagonal elements
of the LR themselves to lie above their 97.5th percen-
tiles, so simply observing a small number of such ex-
cursions would not be sufficient grounds for rejection
of the null-hypothesis without more information (von
Storch 1982; Livezey and Chen 1982). These issues are
discussed in detail in Allen and Smith (1996). There is
a second reason why we should be cautious in inter-
preting results from any test based on PCs or EOFs
derived from the data which is addressed in the follow-
ing subsection.

Allen and Smith (1996) remark that the Monte
Carlo procedure can be replaced with a simple x2 test
in the single-channel case provided we are dealing with
a normally distributed null-hypothesis and near-sinus-
oidal PCs or EOFs. A similar approach could be taken
here, exploiting the fact that the diagonal elements of
the LR will be distributed as the sum of L x2-distri-
buted variables, each with approximately 3 N/Nb de-
grees of freedom, weighted by the individual channel
variances. If all the channels are of equal variance, this
is simply x2-distributed with 3LN/Nb degrees of free-
dom, but with unequal channel variances, the distribu-
tion is more complicated. As a rough guide, we can as-
sume the LR are approximately x2-distributed with the
number of degrees of freedom lying between 3N/Nb
(the case when one channel dominates) and 3 LN/Nb
(the case when all channels contain equal variance).
This may be useful as an initial data-screening proce-
dure, but the Monte Carlo approach gives the simplest
and most robust significance estimates for use in re-
porting results.

3.3 Formulating the test (II): using the PCs and EOFs
of the null-hypothesis

Allen and Smith (1996) argue that when we are uncer-
tain whether or not the oscillation under investigation
actually exists the data-adaptive eigenbasis provided
by PD or ED is not a reliable analysis tool. By construc-
tion, it is tailored to compress the maximum possible
amount of variance in this particular dataset into the

highest-ranked PCs/EOFs. So we should expect to find
anomalously high variance in these PCs/EOFs even if
the data consists of a segment of pure noise. The ex-
tent of this artificial variance compression is difficult to
predict except for very simple processes such as white
noise. A more rigorous approach is to use the PCs/
EOFs appropriate to the null-hypothesis to decide
whether or not the null-hypothesis can be rejected, and
only introduce the PCs/EOFs of the data when we are
confident we have a signal which is worth characteris-
ing.

We obtain this null-hypothesis basis by computing
the expected lag-covariance matrix of the surrogates,
C(P)

N or C(E)
N , defined as the matrix which we would ob-

tain by averaging the C(P)
R or C(E)

R over a large surro-
gate ensemble. Often, this matrix may be known analy-
tically, see Eq. (6). Unlike the CD, the CN will general-
ly both be of full rank. Nonetheless, we should still use
the smaller of the two, to simplify interpretation of re-
sults.

We diagonalise C(P)
N (C(E)

N ) to obtain a set of null-
hypothesis PCs (EOFs), PN (EN) and proceed exactly
as before, projecting both data and surrogates onto
these vectors: LbD{PT

N C(P)
D PN (ET

N C(E)
D EN), and simi-

larly for LbR. For the null-hypothesis of L independent
AR(1) processes, and for most null-hypotheses in
which autocorrelation decays monotonically with time,
the null-hypothesis PCs and the temporal structure of
the null-hypothesis EOFs will be close to sinusoidal, so
it is straightforward to associate a time scale with an
individual PC or EOF. If the k th diagonal element of
LbD is anomalously high relative to the ensemble-de-
rived distribution of the corresponding elements of the
LbR, this indicates anomalous power in the data-set on
this timescale against this null-hypothesis, which would
be evidence for an oscillation.

Using the PCs or EOFs of the null-hypothesis pro-
vides us with a more conservative test for the presence
of a modulated oscillation which is not subject to the
problem of artificial variance compression. It does not
provide an optimal basis for the characterisation and
reconstruction of the null-hypothesis-violating behav-
iour. We recommend, therefore, using the null-hypo-
thesis basis to establish whether or not EEOF/MSSA
indicates any evidence of an oscillation, and then ex-
amining the data basis for a pair of PCs or EOFs which
characterise that oscillation. We can associate vectors
between eigenbases either by computing cross-prod-
ucts (as in Allen and Smith 1996) or, as in the examples
presented here, by finding dominant associated fre-
quencies from the reduced Fourier transform (Vautard
et al. 1992).

4 An example: tropical Pacific SST

We present, as an example, an analysis of sea-surface
temperatures (SSTs) for the period 1951 to 1992 in the
equatorial Pacific region 207N to 207S and 1507E to
807W. The dataset used is the GISST data from the
UK Meteorological Office (Parker et al. 1994). Since
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Fig. 1. Test of GISST tropical Pacific SST (3-month means with
the seasonal cycle removed) for the period 1951–1992, using
Lp10 PCs from a conventional PCA (76.8% of the total var-
iance) as the input channels. The spatial domain is 207N–207S,
1507E–807W, with the 17-resolution GISST data averaged into
47!47 boxes. The data-adaptive basis PD is used, with a F5-year
window: Mp21, Nbp148. Diamonds show the data eigenvalues,
LD, plotted against the dominant frequency associated with the
corresponding PC, computed via a reduced Fourier transform.
The vertical surrogate data bars span the 2.5th to 97.5th percent-
iles of the corresponding diagonal elements of LR computed from
1000 realisations of a noise model consisting of L independent
AR(1) processes with the same gs and c0s as the input data chan-
nels. Two PCs are clearly significant in the upper left corner, with
frequencies around 0.02 (50 months), and a second pair are above
the 97.5th percentiles at 0.034 (23 months). One other low-fre-
quency PC is also indicated

we are interested in interseasonal and interannual var-
iability, we use 47!47!3-month means as our input
data, expressed as anomalies about the 1951–80 sea-
sonal climatology with the statistical mean at each
point removed prior to the analysis.

We initially perform a conventional PCA of the
GISST data and retain 10 conventional PCs which ac-
count for 77% of the variance. These PCs, weighted by
their singular values (so that variances reflect variance
in the original data), provide the L input channels for
the EEOF/MSSA algorithm. Increasing L to 20 has
only a negligible effect on results. We have 42 years of
data, so Np168. Our input channels are centred, pair-
wise uncorrelated at lag-0, and have different var-
iances, c0s, and lag-1 auto-correlations, gs, so we test
the hypothesis of L independent AR(1) processes, in-
dividually centred, with the same c0s and gs as the input
channels.

Following Jiang et al. (1995) we initially use a win-
dow-width of F5 y (Mp21, so Nbp148 – more on the
choice of window below). Figure 1 shows the result,
projecting both data and surrogates onto the data PCs,
PD. Note that Nb~ML in this example, so it is the PCs
which provide our complete basis. Diamonds show the
diagonal elements of LD, plotted against the dominant
frequency of the corresponding PC. Vertical bars show
the 2.5th and 97.5th percentiles of the distributions of
the corresponding elements of LR. The first thing to
notice about this figure is that very few of the data ei-
genvalues lie above their corresponding surrogate data
bars, despite the fact that the surrogates have the same
expected variance as the data and we have used the
data-adaptive basis, PD, which we expect to compress
data variance into high-ranked PCs. Two data eigen-
values, with associated frequencies 0.023 and 0.017
monthsP1 (periods 43–58 months) are clearly visible in
the upper left-hand corner of the plot well separated
from their corresponding surrogate data bars; one
more, with a lower associated frequency, is also visible
in that region (consistent with spectral broadening of
the low-frequency component of El Niño: Penland and
Sardeshmukh 1995); and a further pair, with associated
frequencies both around 0.043 monthsP1 (period 23
months) is also indicated as significant.

Out of a possible 148 PCs, the surrogate data test
against red noise has picked out two pairs associated
with the quasi-biennial (QB) and quasi-quadrennial
(QQ) components of El Niño. If, following Allen and
Smith (1996), we were to incorporate these signals into
the null-hypothesis and readjust the noise parameters
to exclude variance associated with these oscillatory
modes, more signals might emerge, but our main point
here is to stress that the test has pickled out a relatively
small number of components as containing improbably
high variance. If we were to use eigenvalue rank-order
as a criterion of significance, we would have to retain
the highest 14 PCs in order to include the QB compo-
nent. The surrogate data test indicates that 9 of these
contain no more variance than we would expect if the
data consists of a set of independent AR(1) processes.
Testing against red noise, therefore, promises a much

more economical description of the data, in terms of
two oscillatory PC-pairs and AR noise, rather than 14
or more signal PCs plus noise.

A striking feature of Fig. 1 is the large number of
low-ranked data eigenvalues which lie below the 2.5th

percentiles of their corresponding surrogate data bars.
The reason is the artificial variance compression effect
noted above. In this example, we have Nbp148 and
MLp210, so C(P)

D is relatively close to singular. Var-
iance compression is therefore very pronounced, and
starves low-ranked PCs of power. We must, therefore,
confirm results using the null-hypothesis basis, for
which artificial variance compression is not a prob-
lem.

Results are shown in Fig. 2: again, the QQ and QB
frequencies are picked out as containing improbably
high variance, although the QB mode appears at a
slightly lower frequency (25–30 months) and they are
no longer separated by data eigenvalues which are
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Fig. 2. As Fig. 1 but using the null-hypthesis basis, PN, derived
from the expected lag-covariance matrix of the surrogates, C(P)

N

clearly not significant. We should expect leakage of
power between frequencies to be quite pronounced,
since we know that El Niño signals are amplitude- and
phase-modulated. But the use of this basis allows us to
confirm that the anomalous power which we observe
on QQ and QB time scales with the data-adaptive basis
cannot be attributed solely to artificial variance com-
pression. We also observe anomalous power at 15-
month periods, which was not picked out as significant
by the data-adaptive basis. Although we generally ex-
pect the test based on the null-hypothesis basis to be
the more conservative, there may be cases in which a
signal is obscured in the data-adaptive basis due to de-
generacy in the eigen-decomposition and the use of an
alternative basis may bring it out.

A total of 7 excursions above the 97.5th percentiles
are observed in Fig. 2. If these excursions are assumed
to be mutually independent (which they are not), the
probability of 7 or more excursions, given by the bi-
nomial distribution, is approximately 8%. Allen and
Smith (1996) propose a two-pass Monte Carlo ap-
proach to computing the probability of a given number
of excursions which should be used if precise signifi-
cance levels are a priority. The binomial approxima-
tion is, however, sufficient to demonstrate that, with-
out prior knowledge of which frequencies are of inter-
est, the overall confidence level at which we can reject
the red noise null-hypothesis is significantly lower than
97.5%.

It would also still be premature to conclude that the
QQ and QB components represent distinct modes of
El Niño, since the frequencies associated with them in

the data-adaptive basis are separated by almost exactly
1/M. When we are dealing with two oscillatory signals
whose spatial components (channel-dependence) are
not mutually orthogonal, 1/M is the limiting frequency
resolution of the data-adaptive basis in EEOF/MSSA,
recall that C(P)

D is the average of L single-channel lag-
covariance matrices each of rank M. This is a common
problem in EEOF/MSSA and SSA-based analyses of
El Niño, see, for example, Rasmusson et al. (1990),
Keppenne and Ghil (1992), Jiang et al. (1995). At five-
year window is typically used, and a 4–5-year and a
F2-year component identified. These have generally
been thought of as distinct modes but, since they are
invariably separated by something close to the fre-
quency resolution of the algorithm, they are equally
consistent with a broad-band signal spanning the 2–5-
year range.

The observation that two components may have
been prematurely identified as distinct modes in these
previous studies does not mean that they are not, in
fact, distinguishable given adequate spectral resolu-
tion. Indeed, Allen and Smith (1996) use a 15-year
window on an extended Southern Oscillation Index,
and find some evidence of significant power at 2-year
and 4–5-year periods, separated by frequencies which
do not contain more power than we would expect on a
red noise null-hypothesis. They urge caution in the in-
terpretation of this result, since no account has been
taken of the phase-locking between El Niño and the
annual cycle.

A full analysis taking phase-locking into account
would take us beyond the scope of this study, so we
simply demonstrate a second application of the surro-
gate data test, now with Nbp60 3-month intervals (15
years), thus Mp109 (F27 years). With both Nb and M
now close to half the length of these series, we ap-
proach the upper limit of spectral resolution available
in EEOF/MSSA when spatial patterns are not mutual-
ly orthogonal. Results are shown in Fig. 3 for the data-
adaptive basis. Note first how the artificial variance-
compression effect is still present but much reduced.
With NbPMLp1090 the matrix C(P)

D is no longer
close to singular.

Anomalous power against the red-noise hypothesis
is still observed in the QQ and QB frequencies, and we
also observe data eigenvalues near the 97.5th percent-
iles at 15-month and 9-month periods. Although these
signals should not be taken as significant in themselves,
they are intriguing, since Robertson et al. (1995b) and
Robertson et al. (1995a) report power at these fre-
quencies in a coupled model simulation of El Niño.
Note that the QQ mode is no longer characterised by a
PC-pair: one member of the pair has evidently been
scrambled in the eigen-decomposition through degen-
eracy with some other low-frequency component.

Figure 4 shows the analysis with Nbp60 using the
eigenbasis of the null-hypothesis. Again, the QQ and
QB frequencies are indicated as significant, as are a
number of PCs at intermediate frequencies. The 15-
month and 9-month periods are also indicated as po-
tentially of interest, but not clearly significant. A num-
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Fig. 3. As Fig. 1 but using the data-adaptive basis with Nbp60
(15 years)

Fig. 4. As Fig. 3, using the null-hypothesis basis

ber of low-ranked elements of LbD fall below the 2.5th

percentiles. This is to be expected, since we observe
anomalously high variance in LbD in the QQ to QB fre-
quency range, and the total expected variance of the

surrogates is equal to the total variance in the data by
construction.

We observe 6 excursions above the 97.5th percen-
tiles in Fig. 4, which the binomial approximation indi-
cates as ~0.5% probable, as compared to 8% for 7 ex-
cursions with Nbp148. This is an example of how re-
ducing the spectral resolution of the EEOF/MSSA al-
gorithm, although it typically reduces the confidence
level at which individual PCs are indicated as signifi-
cant, may increase the overall confidence level at
which we can reject a null-hypothesis without any prior
information.

5 Discussion

A number of conclusions can be drawn from this sim-
ple demonstration.

5.1 Eigenvalue rank-order and “informal” tests are
unreliable

The PCs corresponding to the QB mode of El Niño
were ranked 13th and 14th in the eigenvalue rank-order
in Fig. 1. Simply picking out the PCs with the largest
associated eigenvalues is not valid as a method of sep-
arating signals from red noise. The main problem with
the EEOF/MSSA algorithm, as previously imple-
mented, is not that it may fail to detect very weak sig-
nals, but that it may appear to detect far too much. Sta-
ble, physical-looking sinusoidal PCs and EOFs are
generated by pure noise and perfectly genuine signals
may occur relatively low in the eigenvalue rank-order.
The surrogate data test applied to the GISST data al-
lowed us to pick out the two frequency ranges in which
the null-hypothesis was clearly violated, and left us
with the plausible conclusion that the rest of the varia-
bility in this dataset could be described as red noise.

5.2 Red noise is hard to beat

We chose, as our example, a dataset which we knew to
display the strongest known mode of tropospheric in-
terannual climate variability: El Niño. We did reject
the red noise null-hypothesis, but not by a large mar-
gin. Perhaps the most remarkable aspect of Figs. 2 and
4 is not the excursions we see above the surrogate data
bars, but the fact that, over the full Nyquist interval
and over 1.5 orders of magnitude in variance, the fit to
the red noise spectrum is extremely good. Even with
the effects of artificial variance compression, the power
in the QQ-mode PCs in the data-adaptive basis (Fig. 1)
is only F50% higher than we would expect on a pure
red noise null-hypothesis: 2/3rds of the variance in the
data at these frequencies can be attributed to red
noise.

We could, of course, have obtained a null-hypothe-
sis which we would have rejected at a much higher con-
fidence level if we had been less careful to ensure that
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the expected variance and lag-1 autocorrelation of the
surrogates were the same as those of the data. But re-
jection of a null-hypothesis with incorrectly specified
parameters, at whatever confidence level, is a meaning-
less result. Given that even El Niño is a relatively close
call against a correctly-specified red noise hypothesis,
algorithms which indicate climate oscillations at much
higher confidence levels should be investigated careful-
ly to ensure that these levels are not just a trivial con-
sequence of poor specification of the noise.

5.3 Rejecting the hypothesis of L independent AR(1)
processes does not necessarily imply an oscillation

The algorithm outlined here allows us to test the hypo-
thesis that the data input channels are consistent with
L independent AR(1) processes. While rejection of
this hypothesis is a necessary condition for us to con-
clude that EEOF/MSSA indicates an oscillation, it is
not, in general, sufficient. For example, two or more of
the L input channels may be significantly correlated at
some lag other than zero for reasons other than an os-
cillation. If Nb~ML this will not directly affect LD or
the expected values of the LR, since cross-channel co-
variance information is not used in C(P)

D or C(P)
R . It

would affect the second-order moments of the LR,
since such correlations would reduce the number of de-
grees of freedom of the system, but except in patholog-
ical cases such as one channel being a lagged copy of
another (which should sorted our prior to the analysis),
the impact on results should be minimal.

If ML~Nb, then non-oscillatory cross-channel cor-
relations at non-zero lags would affect LD and the ex-
pected values of the LR, since cross-channel covar-
iances are used in computing C(E)

D and C(E)
R . In this

situation, rejecting the L-independent-AR(1)-process
hypothesis is less conclusive with respect to the alter-
native hypothesis that the data exhibits an oscillation,
although it remains a necessary condition. The test re-
mains informative, however, since if information prop-
agates consistently from one channel to another at
some constant lag in time, it is worth looking for a phy-
sical explanation whether or not an oscillation is in-
volved. If evaluating the strength of the evidence for
an oscillation is of paramount importance, it will al-
ways be possible, through a different choice of window,
to reformulate the problem such that Nb~ML.

Summary

We have shown how the sliding window algorithm in
EEOF/MSSA can generate oscillatory-looking pat-
terns from pure noise, motivating the need for an ob-
jective hypothesis test in the detection and reconstruc-
tion of oscillatory signals. We have presented a simple
test and demonstrated its application to a relatively un-
controversial geophysical problem. Rejection of the
red noise null-hypothesis using this test should be con-
sidered a necessary condition for EEOF/MSSA to

have detected an oscillation, although in certain situa-
tions non-oscillatory processes might also lead to rejec-
tion. The test described should provide a valuable fil-
tering tool to ensure that investigative energy is not
dissipated on developing oscillatory explanations for
patterns which turn out to be attributable to red
noise.
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